Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds

In this paper, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced and its convergence properties are studied. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained.

[1]  Glaydston de Carvalho Bento,et al.  An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds , 2013, J. Optim. Theory Appl..

[2]  João X. da Cruz Neto,et al.  A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds , 2013, Journal of Optimization Theory and Applications.

[3]  Philipp Grohs,et al.  ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds , 2015, Advances in Computational Mathematics.

[4]  Jonathan H. Manton,et al.  A framework for generalising the Newton method and other iterative methods from Euclidean space to manifolds , 2012, Numerische Mathematik.

[5]  Michael J. Todd,et al.  On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods , 2002, Found. Comput. Math..

[6]  Chong Li,et al.  Monotone vector fields and the proximal point algorithm on Hadamard manifolds , 2009 .

[7]  Guo-ji Tang,et al.  A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence , 2015 .

[8]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[9]  A. Iusem,et al.  Enlargement of Monotone Operators with Applications to Variational Inequalities , 1997 .

[10]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[11]  S. Németh Variational inequalities on Hadamard manifolds , 2003 .

[12]  H. Khatibzadeh,et al.  ON THE CONVERGENCE OF INEXACT PROXIMAL POINT ALGORITHM ON HADAMARD MANIFOLDS , 2014 .

[13]  Orizon P. Ferreira,et al.  Monotone point-to-set vector fields. , 2000 .

[14]  G. Marino,et al.  Equilibrium problems in Hadamard manifolds , 2012 .

[15]  Chang-jie Fang,et al.  A projection algorithm for set-valued variational inequalities on Hadamard manifolds , 2015, Optim. Lett..

[16]  R. Rockafellar,et al.  On the subdifferentiability of convex functions , 1965 .

[17]  Chong Li,et al.  Convergence analysis of inexact proximal point algorithms on Hadamard manifolds , 2015, J. Glob. Optim..

[18]  Nan-Jing Huang,et al.  An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds , 2013, Oper. Res. Lett..

[19]  O. P. Ferreira,et al.  Contributions to the Study of Monotone Vector Fields , 2002 .

[20]  Nan-Jing Huang,et al.  The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds , 2013, Optim. Lett..

[21]  A. Iusem,et al.  Full convergence of the steepest descent method with inexact line searches , 1995 .

[22]  M. R. Pouryayevali,et al.  Nonsmooth Optimization Techniques on Riemannian Manifolds , 2013, J. Optim. Theory Appl..

[23]  Gilles Meyer,et al.  Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries , 2012, Computational Statistics.

[24]  I. Holopainen Riemannian Geometry , 1927, Nature.

[25]  G. C. Bento,et al.  Proximal point method for a special class of nonconvex functions on Hadamard manifolds , 2008, 0809.2594.

[26]  Chong Li,et al.  Variational Inequalities for Set-Valued Vector Fields on Riemannian Manifolds: Convexity of the Solution Set and the Proximal Point Algorithm , 2012, SIAM J. Control. Optim..

[27]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[28]  Henri Bonnel,et al.  Semivectorial Bilevel Optimization on Riemannian Manifolds , 2015, Journal of Optimization Theory and Applications.

[29]  M. Bacák The proximal point algorithm in metric spaces , 2012, 1206.7074.

[30]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[31]  João X. da Cruz Neto,et al.  Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method , 2006, J. Glob. Optim..

[32]  Jérôme Malick,et al.  Newton methods for nonsmooth convex minimization: connections among -Lagrangian, Riemannian Newton and SQP methods , 2005, Math. Program..

[33]  Tamás Rapcsák,et al.  Smooth nonlinear optimization in Rn.. (Nonconvex optimization and its applications, 19.) , 1997 .

[34]  I. Ciorǎnescu Geometry of banach spaces, duality mappings, and nonlinear problems , 1990 .

[35]  J. C. Yao,et al.  Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures , 2015, J. Optim. Theory Appl..

[36]  Alfredo N. Iusem,et al.  A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space , 1998, SIAM J. Optim..

[37]  Jefferson G. Melo,et al.  Subgradient Method for Convex Feasibility on Riemannian Manifolds , 2011, Journal of Optimization Theory and Applications.

[38]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[39]  Tamás Rapcsák,et al.  Smooth Nonlinear Optimization in Rn , 1997 .

[40]  Sergio Amat,et al.  Third-order methods on Riemannian manifolds under Kantorovich conditions , 2014, J. Comput. Appl. Math..

[41]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[42]  M. Todd,et al.  Mathematical Developments Arising from Linear Programming , 1990 .

[43]  Orizon Pereira Ferreira,et al.  Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds , 2012, Journal of Optimization Theory and Applications.

[44]  P. Roberto Oliveira,et al.  Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds , 2012 .

[45]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[46]  Igor Griva,et al.  Interior-Point Methods for Linear Programming , 2009 .

[47]  Chong Li,et al.  Existence of solutions for variational inequalities on Riemannian manifolds , 2009 .

[48]  A. Bloch Hamiltonian and Gradient Flows, Algorithms and Control , 1995 .