Quantified Equality Constraints

An equality template (also equality constraint language) is a relational structure with infinite universe whose relations can be defined by boolean combinations of equalities. We prove a complete complexity classification for quantified constraint satisfaction problems (QCSPs) over equality templates: these problems are in L (decidable in logarithmic space), NP-complete, or PSPACE-complete. To establish our classification theorem we combine methods from universal algebra with concepts from model theory.

[1]  H. Keisler Reduced products and Horn classes , 1965 .

[2]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[3]  I. G. Rosenberg,et al.  Finite Clones Containing All Permutations , 1994, Canadian Journal of Mathematics.

[4]  Manuel Bodirsky,et al.  Collapsibility in Infinite-Domain Quantified Constraint Satisfaction , 2006, CSL.

[5]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[6]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[7]  Emil W. Kiss,et al.  On Tractability and Congruence Distributivity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[8]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[9]  Dexter Kozen Communication: Positive First-Order Logic is NP-Complete , 1981, IBM J. Res. Dev..

[10]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[11]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[12]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[13]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[14]  D. Marker Model theory : an introduction , 2002 .

[15]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[16]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[17]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[18]  Sanjeev Khanna,et al.  3. Boolean Constraint Satisfaction Problems , 2001 .

[19]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[20]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[21]  Pawel M. Idziak,et al.  Tractability and learnability arising from algebras with few subpowers , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[22]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[23]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[24]  Manuel Bodirsky,et al.  The Complexity of Equality Constraint Languages , 2006, CSR.

[25]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[26]  Peter Jeavons,et al.  The complexity of constraint satisfaction games and QCSP , 2009, Inf. Comput..

[27]  Rasmus Ejlers Møgelberg,et al.  Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science , 2007 .

[28]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[29]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[30]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.