Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations

This work describes sequences of extended morphological transformations for filtering and classification of high-dimensional remotely sensed hyperspectral datasets. The proposed approaches are based on the generalization of concepts from mathematical morphology theory to multichannel imagery. A new vector organization scheme is described, and fundamental morphological vector operations are defined by extension. Extended morphological transformations, characterized by simultaneously considering the spatial and spectral information contained in hyperspectral datasets, are applied to agricultural and urban classification problems where efficacy in discriminating between subtly different ground covers is required. The methods are tested using real hyperspectral imagery collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory Airborne Visible-Infrared Imaging Spectrometer and the German Aerospace Agency Digital Airborne Imaging Spectrometer (DAIS 7915). Experimental results reveal that, by designing morphological filtering methods that take into account the complementary nature of spatial and spectral information in a simultaneous manner, it is possible to alleviate the problems related to each of them when taken separately.

[1]  Ioannis Pitas,et al.  Multichannel L filters based on marginal data ordering , 1994, IEEE Trans. Signal Process..

[2]  Henk J. A. M. Heijmans,et al.  Fundamenta Morphologicae Mathematicae , 2000, Fundam. Informaticae.

[3]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Varun Madhok,et al.  Spectral-spatial analysis of remote sensing data: An image model and a procedural design , 1999 .

[5]  J.A. Benediktsson,et al.  Morphological transformations and feature extraction of urban data with high spectral and spatial resolution , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[6]  Jiang Li,et al.  Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[7]  Peter Strobl,et al.  HySens-DAIS/ROSIS Imaging Spectrometers at DLR , 2002, Remote Sensing.

[8]  Isabelle Bloch,et al.  Geodesic balls in a fuzzy set and fuzzy geodesic mathematical morphology , 2000, Pattern Recognit..

[9]  Ioannis Andreadis,et al.  A new approach to morphological color image processing , 2002, Pattern Recognit..

[10]  Martino Pesaresi,et al.  Detection of Urban Features Using Morphological Based Segmentation and Very High Resolution Remotely Sensed Data , 1999 .

[11]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Chein-I Chang,et al.  An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis , 2000, IEEE Trans. Inf. Theory.

[13]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Krishnamoorthy Sivakumar,et al.  Morphological Operators for Image Sequences , 1995, Comput. Vis. Image Underst..

[15]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[16]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[17]  Fuan Tsai,et al.  Derivative Analysis of Hyperspectral Data , 1998 .

[18]  Sinthop Kaewpijit,et al.  Automatic reduction of hyperspectral imagery using wavelet spectral analysis , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  Antonio J. Plaza,et al.  Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Plaza,et al.  Spatial/Spectral analysis of hyperspectral image data , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[21]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[22]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[23]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[24]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..

[25]  José Crespo,et al.  Theoretical aspects of morphological filters by reconstruction , 1995, Signal Process..

[26]  Matthew Lybanon Maltese Front variability from satellite observations based on automated detection , 1996, IEEE Trans. Geosci. Remote. Sens..

[27]  Qian Du,et al.  Hidden Markov model approach to spectral analysis for hyperspectral imagery , 2001 .

[28]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[29]  David A. Landgrebe,et al.  Decision boundary feature extraction for neural networks , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[30]  G. Matheron,et al.  THE BIRTH OF MATHEMATICAL MORPHOLOGY , 2002 .

[31]  Johannes R. Sveinsson,et al.  Classification and feature extraction of AVIRIS data , 1995, IEEE Trans. Geosci. Remote. Sens..

[32]  Pierre Soille,et al.  Advances in mathematical morphology applied to geoscience and remote sensing , 2002, IEEE Trans. Geosci. Remote. Sens..

[33]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[34]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[35]  Antonio J. Plaza,et al.  Hyperspectral image analysis by scale-orientation morphological profiles , 2004, SPIE Remote Sensing.

[36]  Jaakko Astola,et al.  Nonlinear multivariate image filtering techniques , 1995, IEEE Trans. Image Process..

[37]  Robert F. Cromp,et al.  Support Vector Machine Classifiers as Applied to AVIRIS Data , 1999 .

[38]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[40]  Jon Atli Benediktsson,et al.  On the use of morphological alternated sequential filters for the classification of remote sensing images from urban areas , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).