Photoelectrochemical Device Designs toward Practical Solar Water Splitting: A Review on the Recent Progress of BiVO4 and BiFeO3 Photoanodes

[1]  Roel van de Krol,et al.  Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes , 2012 .

[2]  J. M. Baik,et al.  Two-dimensional metal-dielectric hybrid-structured film with titanium oxide for enhanced visible light absorption and photo-catalytic application , 2016 .

[3]  L. You,et al.  Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles , 2016 .

[4]  Ho Won Jang,et al.  Plasmonic gold nanoparticle-decorated BiVO4/ZnO nanowire heterostructure photoanodes for efficient water oxidation , 2018 .

[5]  Ho Won Jang,et al.  Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies , 2018, MRS Communications.

[6]  Yiping Guo,et al.  Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer. , 2013, ACS applied materials & interfaces.

[7]  Arunava Gupta,et al.  Plasmonic Enhancement of Photoactivity by Gold Nanoparticles Embedded in Hematite Films , 2015 .

[8]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[9]  Mingzhao Liu,et al.  Ultrathin Lutetium Oxide Film as an Epitaxial Hole‐Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes , 2018 .

[10]  Siang-Piao Chai,et al.  Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? , 2016, Chemical reviews.

[11]  John Wang,et al.  Orientation dependence of ferroelectric behavior of BiFeO3 thin films , 2009 .

[12]  Yung C. Liang,et al.  Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting , 2013 .

[13]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[14]  T. Miyazaki,et al.  Crystal Structures and Electrical Properties of Epitaxial BiFeO3 Thin Films with (001), (110), and (111) Orientations , 2010 .

[15]  H. Yi,et al.  Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3 , 2011, Advanced materials.

[16]  Ho Won Jang,et al.  Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles. , 2017, Small.

[17]  A. Rothschild,et al.  The “Rust” Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting , 2018, Advanced materials.

[18]  Ho Won Jang,et al.  Tailoring Crystallographic Orientations to Substantially Enhance Charge Separation Efficiency in Anisotropic BiVO4 Photoanodes , 2018 .

[19]  Z. Zou,et al.  Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. , 2011, Physical chemistry chemical physics : PCCP.

[20]  Dino Klotz,et al.  Effect of Orientation on Bulk and Surface Properties of Sn-doped Hematite (α-Fe2O3) Heteroepitaxial Thin Film Photoanodes , 2016 .

[21]  C. Carmalt,et al.  A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation , 2014 .

[22]  C. Zhang,et al.  Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation , 2016, Journal of Materials Science.

[23]  Y. Lei,et al.  Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO₃ photoelectrodes. , 2014, Angewandte Chemie.

[24]  Xudong Wang,et al.  Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes. , 2015, Nano letters.

[25]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[26]  Junqi Li,et al.  Enhancing the photoelectrochemical performance of BiVO4 by decorating only its (040) facet with self-assembled Ag@AgCl QDs , 2018, Journal of Solid State Electrochemistry.

[27]  Kevin G. Stamplecoskie,et al.  Wavelength-Dependent Ultrafast Charge Carrier Separation in the WO3/BiVO4 Coupled System , 2017 .

[28]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[29]  J. Baumberg,et al.  Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting , 2015, Scientific Reports.

[30]  R. van de Krol,et al.  Photocurrent Enhancement by Spontaneous Formation of a p-n Junction in Calcium-Doped Bismuth Vanadate Photoelectrodes. , 2018, ChemPlusChem.

[31]  L. Martin,et al.  Switching kinetics in epitaxial BiFeO3 thin films , 2010 .

[32]  Qinghua Liu,et al.  Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO4 for Efficient Photoelectrochemical Water Oxidation. , 2018, ACS applied materials & interfaces.

[33]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[34]  Rong Huang,et al.  Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures , 2017 .

[35]  Rong Huang,et al.  WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4 , 2017 .

[36]  Jiale Xie,et al.  Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation , 2017 .

[37]  S. Mozaffari,et al.  Pulsed Laser Deposition of Epitaxial and Polycrystalline Bismuth Vanadate Thin Films , 2014 .

[38]  W. Kleemann Absorption of colloidal silver in KCl , 1968 .

[39]  Y. Chu,et al.  Self‐Assembled BiFeO3‐ε‐Fe2O3 Vertical Heteroepitaxy for Visible Light Photoelectrochemistry , 2016 .

[40]  Daniel A. Hillsberry,et al.  Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy , 2013 .

[41]  C. Mirkin,et al.  Catalyst design by scanning probe block copolymer lithography , 2018, Proceedings of the National Academy of Sciences.

[42]  Ho Won Jang,et al.  Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting , 2017 .

[43]  M. Grätzel,et al.  Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation , 2011 .

[44]  Gil Ju Lee,et al.  Plasmonic Silver Nanoparticle-Impregnated Nanocomposite BiVO4 Photoanode for Plasmon-Enhanced Photocatalytic Water Splitting , 2018 .

[45]  Alexander J. Cowan,et al.  Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. , 2011, Chemical communications.

[46]  Xudong Wang,et al.  Surface-Plasmon-Resonance-Enhanced Photoelectrochemical Water Splitting from Au-Nanoparticle-Decorated 3D TiO2 Nanorod Architectures , 2017 .

[47]  The Nature of Polarization Fatigue in BiFeO3 , 2011, Advanced materials.

[48]  Ho Won Jang,et al.  Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition. , 2017, ACS applied materials & interfaces.

[49]  Tao Zhang,et al.  Photoelectrochemical devices for solar water splitting - materials and challenges. , 2017, Chemical Society reviews.

[50]  J. MacManus‐Driscoll Self‐Assembled Heteroepitaxial Oxide Nanocomposite Thin Film Structures: Designing Interface‐Induced Functionality in Electronic Materials , 2010 .

[51]  A. Bard,et al.  Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. , 2013, Journal of the American Chemical Society.

[52]  P. Woodward,et al.  Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies , 2008 .

[53]  Yen-Lin Huang,et al.  Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure. , 2016, Nanoscale.

[54]  Kao-Der Chang,et al.  Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement , 2015 .

[55]  H. Xin,et al.  Anomalous Conductivity Tailored by Domain-Boundary Transport in Crystalline Bismuth Vanadate Photoanodes , 2018 .

[56]  J. K. Hurst In Pursuit of Water Oxidation Catalysts for Solar Fuel Production , 2010, Science.

[57]  F. Abdi,et al.  Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W‐doping , 2013 .

[58]  Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties , 2005, cond-mat/0508570.

[59]  Lin-Wang Wang,et al.  Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution , 2012, 1203.1970.

[60]  Ferrell,et al.  Experimental test of the Mie theory for microlithographically produced silver spheres. , 1987, Physical review. B, Condensed matter.

[61]  M. Dupuis,et al.  The nature of photogenerated charge separation among different crystal facets of BiVO4 studied by density functional theory. , 2015, Physical chemistry chemical physics : PCCP.

[62]  Ho Won Jang,et al.  Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting , 2018, Nano Research.

[63]  D. Emin,et al.  Anisotropic small-polaron hopping in W:BiVO4 single crystals , 2015 .

[64]  Z. Zou,et al.  A Facet‐Dependent Schottky‐Junction Electron Shuttle in a BiVO4{010}–Au–Cu2O Z‐Scheme Photocatalyst for Efficient Charge Separation , 2018, Advanced Functional Materials.

[65]  F. Claeyssens,et al.  Pulsed laser ablation and deposition of thin films. , 2004, Chemical Society reviews.

[66]  Juan Bisquert,et al.  Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes. , 2012, Journal of the American Chemical Society.

[67]  Yiseul Park,et al.  Progress in bismuth vanadate photoanodes for use in solar water oxidation. , 2013, Chemical Society reviews.

[68]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[69]  Wei Li,et al.  Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions. , 2019, ACS applied materials & interfaces.

[70]  Dong Hoe Kim,et al.  Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control , 2018 .

[71]  G. Fazio,et al.  Water-Assisted Hole Trapping at the Highly Curved Surface of Nano-TiO2 Photocatalyst , 2018, Journal of the American Chemical Society.

[72]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[73]  Junling Wang,et al.  Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions , 2004 .