Wavelets and Fast Numerical Algorithms
暂无分享,去创建一个
[1] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[2] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[3] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[4] Mark J. T. Smith,et al. Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..
[5] Y. Meyer. Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .
[6] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[7] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[8] Vladimir Rokhlin,et al. A Fast Algorithm for the Numerical Evaluation of Conformal Mappings , 1989 .
[9] Henrique S. Malvar. Lapped transforms for efficient transform/subband coding , 1990, IEEE Trans. Acoust. Speech Signal Process..
[10] L. Greengardt. POTENTIAL FLOW IN CHANNELS , 1990 .
[11] B. Alpert,et al. Wavelets for the Fast Solution of Second-Kind Integral Equations , 1990 .
[12] Bradley K. Alpert,et al. A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..
[13] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[14] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[15] S. Jaffard. Wavelet methods for fast resolution of elliptic problems , 1992 .
[16] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[17] Pierre Gilles Lemarié-Rieusset,et al. Analyse multi-résolution bi-orthogonale sur l’intervalle et applications , 1993 .
[18] Y. Meyer. Wavelets and Operators , 1993 .
[19] I. Daubechies,et al. Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .
[20] G. Beylkin,et al. On the representation of operators in bases of compactly supported wavelets , 1992 .
[21] G. Beylkin. On Wavelet-based Algorithms for Solving Diierential Equations. I Introduction , .
[22] J. CARRIERt,et al. A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .