An Extension of Newton's Method to omega -Continuous Semirings

Fixed point equations x = F (x) over ω-continuous semirings are a natural mathematical foundation of interprocedural program analysis. Equations over the semiring of the real numbers can be solved numerically using Newton's method. We generalize the method to any ω-continuous semiring and show that it converges faster to the least fixed point than the Kleene sequence 0, F(0),F (F (0)), . . . We prove that the Newton approximants in the semiring of languages coincide with finite-index approximations studied by several authors in the 1960s. Finally, we apply our results to the analysis of stochastic context-free grammars.

[1]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[2]  Seymour Ginsburg,et al.  Derivation-Bounded Languages , 1968, J. Comput. Syst. Sci..

[3]  Arto Salomaa,et al.  On the Index of a Context-Free Grammar and Language , 1969, Inf. Control..

[4]  Henning Fernau,et al.  Conditional Context-Free Languages of Finite Index , 1997, New Trends in Formal Languages.

[5]  Javier Esparza,et al.  Quantitative analysis of probabilistic pushdown automata: expectations and variances , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[6]  Michael Luttenberger,et al.  On Fixed Point Equations over Commutative Semirings , 2007, STACS.

[7]  Dexter Kozen,et al.  Parikh's theorem in commutative Kleene algebra , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[8]  Bjarne Knudsen,et al.  RNA secondary structure prediction using stochastic context-free grammars and evolutionary history , 1999, Bioinform..

[9]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[10]  S. Venit,et al.  Numerical Analysis: A Second Course. , 1974 .

[11]  Jozef Gruska A Few Remarks on the Index of Context-Free Grammars and Languages , 1971, Inf. Control..

[12]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[13]  J. Ortega Numerical Analysis: A Second Course , 1974 .

[14]  Mary Katherine Yntema,et al.  Inclusion Relations Among Families Of Context-Free Languages , 1967, Inf. Control..

[15]  J. Esparza,et al.  Model checking probabilistic pushdown automata , 2004, LICS 2004.