Global, in situ, site-specific analysis of protein S-sulfenylation

[1]  J. Reisz,et al.  Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. , 2015, Free radical biology & medicine.

[2]  L. Poole The basics of thiols and cysteines in redox biology and chemistry. , 2015, Free radical biology & medicine.

[3]  Michael J. Oehler,et al.  Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. , 2015, Nature chemical biology.

[4]  Theodoros Goulas,et al.  LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification , 2014, Nature Methods.

[5]  Daniel C. Liebler,et al.  Site-specific mapping and quantification of protein S-sulfenylation in cells , 2014, Nature Communications.

[6]  Jeffrey R. Whiteaker,et al.  Proteogenomic characterization of human colon and rectal cancer , 2014, Nature.

[7]  Benjamin F. Cravatt,et al.  A roadmap to evaluate the proteome-wide selectivity of covalent kinase inhibitors , 2014, Nature chemical biology.

[8]  Henrik Molina,et al.  Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry , 2014, Nature Protocols.

[9]  Xiaofeng Guo,et al.  Confetti: A Multiprotease Map of the HeLa Proteome for Comprehensive Proteomics* , 2014, Molecular & Cellular Proteomics.

[10]  Kate S. Carroll,et al.  Proteomic analysis of peptides tagged with dimedone and related probes. , 2014, Journal of mass spectrometry : JMS.

[11]  A. Aharoni,et al.  Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment , 2014, Proceedings of the National Academy of Sciences.

[12]  Kate S Carroll,et al.  Sulfenic acid chemistry, detection and cellular lifetime. , 2014, Biochimica et biophysica acta.

[13]  Richard D. Smith,et al.  Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. , 2014, Free radical biology & medicine.

[14]  Daniel C. Liebler,et al.  Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems* , 2014, Molecular & Cellular Proteomics.

[15]  Benjamin F. Cravatt,et al.  A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles , 2013, Nature Methods.

[16]  Richard D. Smith,et al.  Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications , 2013, Nature Protocols.

[17]  J. Reisz,et al.  Thiol‐blocking electrophiles interfere with labeling and detection of protein sulfenic acids , 2013, The FEBS journal.

[18]  E. Weerapana,et al.  An Isotopically Tagged Azobenzene‐Based Cleavable Linker for Quantitative Proteomics , 2013, Chembiochem : a European journal of chemical biology.

[19]  Markus Grammel,et al.  Chemical reporters for biological discovery. , 2013, Nature chemical biology.

[20]  Steven A Carr,et al.  Integrated proteomic analysis of post-translational modifications by serial enrichment , 2013, Nature Methods.

[21]  Peng Wu,et al.  Single-stranded DNA as a cleavable linker for bioorthogonal click chemistry-based proteomics. , 2013, Bioconjugate chemistry.

[22]  Matthew E Monroe,et al.  Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry. , 2013, Free radical biology & medicine.

[23]  Kate S. Carroll,et al.  Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery , 2013, Chemical reviews.

[24]  B. Cravatt,et al.  Determining target engagement in living systems. , 2013, Nature chemical biology.

[25]  X. Deng,et al.  Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. , 2013, Cell host & microbe.

[26]  David Komander,et al.  Regulation of A20 and other OTU deubiquitinases by reversible oxidation , 2013, Nature Communications.

[27]  B. Cravatt,et al.  Proteome-wide Mapping of Cholesterol-Interacting Proteins in Mammalian Cells , 2013, Nature Methods.

[28]  R. Banerjee,et al.  Time line of redox events in aging postmitotic cells , 2013, eLife.

[29]  Jerry D. Holman,et al.  Informatics of protein and posttranslational modification detection via shotgun proteomics. , 2013, Methods in molecular biology.

[30]  R. Aebersold,et al.  Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. , 2012, Journal of proteome research.

[31]  Kate S. Carroll,et al.  Bioorthogonal Chemical Reporters for Analyzing Protein Sulfenylation in Cells , 2012 .

[32]  Matthew E Monroe,et al.  Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets , 2012, Proceedings of the National Academy of Sciences.

[33]  Michael J. MacCoss,et al.  Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline , 2012, Molecular & Cellular Proteomics.

[34]  Jerry D. Holman,et al.  Identifying Proteomic LC‐MS/MS Data Sets with Bumbershoot and IDPicker , 2012, Current protocols in bioinformatics.

[35]  Benjamin F. Cravatt,et al.  Global profiling of dynamic protein palmitoylation , 2011, Nature Methods.

[36]  Jason W. Locasale,et al.  Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses , 2011, Science.

[37]  Matthew Chambers,et al.  Supporting tool suite for production proteomics , 2011, Bioinform..

[38]  D. Reichmann,et al.  Using Quantitative Redox Proteomics to Dissect the Yeast Redoxome* , 2011, The Journal of Biological Chemistry.

[39]  Wei Wang,et al.  Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition. , 2011, Chemistry, an Asian journal.

[40]  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[41]  Goedele Roos,et al.  Protein sulfenic acid formation: from cellular damage to redox regulation. , 2011, Free radical biology & medicine.

[42]  Eunok Paek,et al.  Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species , 2011, Proceedings of the National Academy of Sciences.

[43]  Kate S Carroll,et al.  Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. , 2011, Nature chemical biology.

[44]  Daniela C Dieterich,et al.  Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. , 2010, Journal of the American Chemical Society.

[45]  M. Lavin,et al.  ATM Activation by Oxidative Stress , 2010, Science.

[46]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[47]  M. J. Wood,et al.  Formation, reactivity, and detection of protein sulfenic acids. , 2010, Chemical research in toxicology.

[48]  David Baker,et al.  Quantitative reactivity profiling predicts functional cysteines in proteomes , 2010, Nature.

[49]  Roland L Dunbrack,et al.  Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation , 2010, Proceedings of the National Academy of Sciences.

[50]  R. Slebos,et al.  Cysteinyl Peptide Capture for Shotgun Proteomics: Global Assessment of Chemoselective Fractionation , 2010, Journal of proteome research.

[51]  D. Tabb,et al.  TagRecon: high-throughput mutation identification through sequence tagging. , 2010, Journal of proteome research.

[52]  Brendan MacLean,et al.  Bioinformatics Applications Note Gene Expression Skyline: an Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments , 2022 .

[53]  Kate S. Carroll,et al.  A Periplasmic Reducing System Protects Single Cysteine Residues from Oxidation , 2009, Science.

[54]  J. Shabanowitz,et al.  Enrichment and Site Mapping of O-Linked N-Acetylglucosamine by a Combination of Chemical/Enzymatic Tagging, Photochemical Cleavage, and Electron Transfer Dissociation Mass Spectrometry* , 2009, Molecular & Cellular Proteomics.

[55]  Michael D. Litton,et al.  IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering. , 2009, Journal of proteome research.

[56]  D. Liebler,et al.  An Azido-Biotin Reagent for Use in the Isolation of Protein Adducts of Lipid-derived Electrophiles by Streptavidin Catch and Photorelease* , 2009, Molecular & Cellular Proteomics.

[57]  Scott M. Sobecki,et al.  Global Analysis of Protein Damage by the Lipid Electrophile 4-Hydroxy-2-nonenal*S⃞ , 2009, Molecular & Cellular Proteomics.

[58]  Brent R. Martin,et al.  Large-scale profiling of protein palmitoylation in mammalian cells , 2009, Nature Methods.

[59]  David L Tabb,et al.  DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. , 2008, Journal of proteome research.

[60]  J. Strahler,et al.  Quantifying changes in the thiol redox proteome upon oxidative stress in vivo , 2008, Proceedings of the National Academy of Sciences.

[61]  L. Poole,et al.  Discovering mechanisms of signaling-mediated cysteine oxidation. , 2008, Current opinion in chemical biology.

[62]  J. Fetrow,et al.  Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. , 2007, Bioconjugate chemistry.

[63]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[64]  P. C. Wille,et al.  Unbiased identification of cysteine S-nitrosylation sites on proteins , 2007, Nature Protocols.

[65]  B. Cravatt,et al.  Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes , 2007, Nature Protocols.

[66]  David L Tabb,et al.  Verification of automated peptide identifications from proteomic tandem mass spectra , 2006, Nature Protocols.

[67]  Fabien Campagne,et al.  SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Boutonnier,et al.  On the preparation of carbohydrate-protein conjugates using the traceless Staudinger ligation. , 2005, The Journal of organic chemistry.

[69]  B. Cravatt,et al.  A tandem orthogonal proteolysis strategy for high-content chemical proteomics. , 2005, Journal of the American Chemical Society.

[70]  Yingming Zhao,et al.  Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. , 2005, Journal of proteome research.

[71]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[72]  Miles Congreve,et al.  Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B , 2003, Nature.

[73]  P. Karplus,et al.  Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling , 2003, Science.

[74]  B. Zwanenburg,et al.  Synthesis and bioactivity of labelled germination stimulants for the isolation and identification of the strigolactone receptor. , 2003, Organic & biomolecular chemistry.

[75]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[76]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[77]  S. Rhee,et al.  Reversible Inactivation of Protein-tyrosine Phosphatase 1B in A431 Cells Stimulated with Epidermal Growth Factor* , 1998, The Journal of Biological Chemistry.

[78]  S. Copley,et al.  Identification and localization of a stable sulfenic acid in peroxide-treated tetrachlorohydroquinone dehalogenase using electrospray mass spectrometry. , 1996, Chemistry & biology.

[79]  R. Rock,et al.  Synthesis and Photolysis Properties of a Photolabile Linker Based on 3′ -Methoxybenzoin. , 1996 .

[80]  D. Parsonage,et al.  Protein‐sulfenic acid stabilization and function in enzyme catalysis and gene regulation , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[81]  W. Allison,et al.  The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. , 1974, The Journal of biological chemistry.