High-Order Modeling of Hydraulic Power Plant in Islanded Power Network

Numerical simulations of the transient operation of an islanded power network subject to load rejections are performed. The islanded power network case study consists of a 1-GW hydroelectric power plant featuring four generating units, a long penstock, and a surge tank connected to four 1.3-GW thermal power plants and passive consumers. The modeling of every network component is described and special care is paid to the modeling of the hydroelectric power plant. In particular, the high-order modeling used for these investigations enables the detailed simulation of water hammer, mass oscillations, and nonlinear hydraulic characteristics of the turbines interacting with the electrical components of the network. Moreover, the stability analysis of the systems is performed for different load conditions and the damping performances of a power system stabilizer IEEE PSS2B are investigated.

[1]  Christophe Nicolet,et al.  New Tools for the Simulation of Transient Phenomena in Francis Turbine Power Plants , 2002 .

[2]  Chu Liu,et al.  Eigenanalysis of Oscillatory Instability of a Hydropower Plant Including Water Conduit Dynamics , 2007, IEEE Transactions on Power Systems.

[3]  C. D. Johnson,et al.  A comparison study of some impulse-response identification methods , 1989, [1989] Proceedings. The Twenty-First Southeastern Symposium on System Theory.

[4]  Alain Sapin Logiciel modulaire pour la simulation et l"étude des systèmes d"entraînement et des réseaux électriques , 1995 .

[5]  Keith R. Godfrey,et al.  Design and application of multifrequency signals , 1991 .

[6]  François Avellan,et al.  Transient Phenomena in Francis Turbine Power Plants: Interaction with the Power Network. , 2003 .

[7]  Christine Delbe Modélisation comportementale et commande découplée d'un groupe turbo-alternateur connecte a un réseau fini de distribution d’énergie électrique , 1991 .

[8]  P. Allenbach,et al.  On the hydroelectric stability of an islanded power network , 2006, 2006 IEEE Power Engineering Society General Meeting.

[9]  O. H. Souza,et al.  Study of hydraulic transients in hydropower plants through simulation of nonlinear model of penstock and hydraulic turbine model , 1999 .

[10]  A. Murdoch,et al.  Integral of accelerating power type PSS. I. Theory, design, and tuning methodology , 1999 .

[11]  David P. Thoma Zur Theorie des Wasserschlosses bei selbsttätig geregelten Turbinenanlagen , 1910 .

[12]  R. Grondin,et al.  IEEE PSS2B versus PSS4B: the limits of performance of modern power system stabilizers , 2005, IEEE Transactions on Power Systems.

[13]  Henry M. Paynter,et al.  Closure of "Electrical Analogies and Electronic Computers: A Symposium: Surge and Water Hammer Problems" , 1953 .

[14]  I. M. Canay EXTENDED SYNCHRONOUS-MACHINE MODEL FOR THE CALCULATION OF TRANSIENT PROCESSES AND STABILITY , 1977 .

[15]  J. A. Tegopoulos,et al.  Investigation of oscillatory problems of hydraulic generating units equipped with Francis turbines , 1997 .

[16]  Charles Jaeger,et al.  Fluid transients in hydro-electric engineering practice , 1977 .

[17]  E. Benjamin Wylie,et al.  Fluid Transients in Systems , 1993 .