On the electronic-photonic integrated circuit design automation : modelling, design, analysis, and simulation

Photonic networks form the backbone of the data communication infrastructure. In particular, in current and future wireless communication systems, photonic networks are becoming increasingly popular for data distribution between the central office and the remote antenna units at base stations. As wireless-photonic systems become increasingly more popular, not only low-cost implementation of such systems is desirable, but also a reliable electronic-photonic design automation (EPDA) framework supporting such complex circuits and systems is crucial. This work investigates the foundation and presents implementation of various aspects of such EPDA framework. Various building blocks of silicon-photonic systems are reviewed in the first chapter of the thesis. The review discusses an example of a 60-GHz wireless system based on photonic technology, which could be suitable for the emerging 5th-generation (5G) cellular networks, and also provides design use cases that need to be supported by the EPDA framework. Integrated photonic circuits, which are the building blocks of wirelessphotonic systems, will achieve their potential only if designers can efficiently and reliably design, model, simulate, and tune the performance of electro-optical components. The developed EPDA framework supports an integrated optical solver, INTERCONNECT, to provide optical time and frequency domain simulations so that a designer would be able to simulate electrical, optical, and electro-optical circuits using two developed and implemented methodologies: sequential electro-optical simulation and cosimulation. We propose an algorithm to enhance the performance of electronic simulation engines that can be integrated into the EPDA simulation methods such as Harmonic Balance. It will be shown that body-biasing of CMOS transistors can be used as an effective method for tuning the performance of the electronic section of an electro-optical design. This can help designers adjusting the performance of their designs after fabrication. Modelling of electro-optical components is discussed in this thesis; It is shown that some traditional passive components such as inductors, which take a large amount of space in CMOS processes, could be fabricated in the much

[1]  P. Wolf,et al.  1550-nm High-Speed Short-Cavity VCSELs , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[3]  Kwyro Lee,et al.  Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors , 2004, IEEE Journal of Solid-State Circuits.

[4]  Ali M. Niknejad,et al.  Design considerations for 60 GHz CMOS radios , 2004, IEEE Communications Magazine.

[5]  T. Baehr‐Jones,et al.  Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators , 2005, Journal of Lightwave Technology.

[6]  Ray T. Chen,et al.  Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics , 2012 .

[7]  S. Brision,et al.  Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers , 2010, Photonics Europe.

[8]  Ali M. Niknejad,et al.  A Highly Integrated 60GHz CMOS Front-End Receiver , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[9]  V. D. Haan Asymmetric Mach–Zehnder fiber interferometer test of the anisotropy of the speed of light , 2009, 0909.0452.

[10]  Ashok V. Krishnamoorthy,et al.  Ultralow-power high-performance Si photonic transmitter , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[11]  Vladimir Stojanovic,et al.  Photonics design tool for advanced CMOS nodes , 2015, 1504.03669.

[12]  Hao Zhang,et al.  Capacity of 60 GHz Wireless Communication Systems over Fading Channels , 2012, J. Networks.

[13]  Sanjay Raman,et al.  Quality factor and inductance in differential IC implementations , 2002 .

[14]  Mohamed-Slim Alouini,et al.  Digital Communication over Fading Channels: Simon/Digital Communications 2e , 2004 .

[15]  P. Wambacq,et al.  A Compact Wideband Front-End Using a Single-Inductor Dual-Band VCO in 90 nm Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[16]  K. Yvind,et al.  Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide , 2010 .

[17]  Hon Ki Tsang,et al.  Apodized focusing subwavelength grating couplers for suspended membrane waveguides , 2012 .

[18]  Zhiming Chen,et al.  W-Band Silicon-Based Frequency Synthesizers Using Injection-Locked and Harmonic Triplers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[19]  Nicolas A. F. Jaeger,et al.  Crosstalk in SOI Microring Resonator-Based Filters , 2016, Journal of Lightwave Technology.

[20]  Mabrouki Aya,et al.  A very low voltage low power CMOS Low Noise Amplifier with forward body bias , 2010, Proceedings of the 8th IEEE International NEWCAS Conference 2010.

[21]  R. Collin Field theory of guided waves , 1960 .

[22]  P Gunupudi,et al.  Self-Consistent Simulation of Opto-Electronic Circuits Using a Modified Nodal Analysis Formulation , 2010, IEEE Transactions on Advanced Packaging.

[23]  Jong-Won Yu,et al.  A 60 GHz Wideband Phased-Array LNA With Short-Stub Passive Vector Generator , 2010, IEEE Microwave and Wireless Components Letters.

[24]  Hankyu Chi,et al.  12.5-Gb/s analog front-end of an optical transceiver in 0.13-μm CMOS , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[25]  Y. Deval,et al.  A 0.9V body effect feedback 2 GHz low noise amplifier , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[26]  Amit Mehrotra,et al.  Continuation method in multitone harmonic balance , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[27]  Pierluigi Nuzzo,et al.  A 2-mm$^{2}$ 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS , 2009, IEEE Journal of Solid-State Circuits.

[28]  Jan Craninckx,et al.  Wideband VCO with Simultaneous Switching of Frequency Band, Active Core and Varactor Size , 2006 .

[29]  John F. Spina,et al.  Sinusoidal analysis and modeling of weakly nonlinear circuits : with application to nonlinear interference effects , 1980 .

[30]  Byung-Sung Kim,et al.  Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker , 2006 .

[31]  Dong Jie,et al.  Channel Capacity of 60 GHz Wireless Communication Systems over Indoor Line-of-Sight and Non-Line-of-Sight Channels , 2010, 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

[32]  W. Hofmann,et al.  1.55-$\mu$ m VCSEL With Enhanced Modulation Bandwidth and Temperature Range , 2009, IEEE Photonics Technology Letters.

[33]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[34]  Ahmed S. Elwakil,et al.  High-quality factor asymmetric-slope band-pass filters: A fractional-order capacitor approach , 2012, IET Circuits Devices Syst..

[35]  An effective method for generating initial condition in harmonic balance analysis using method of nonlinear currents , 2009, 2009 Asia Pacific Microwave Conference.

[36]  Assia Barkai,et al.  Integrated hybrid silicon triplexer. , 2010, Optics express.

[37]  Shahriar Mirabbasi,et al.  An ultra-low-voltage CMOS mixer using switched-transconductance, current-reuse and dynamic-threshold-voltage gain-boosting techniques , 2012, 10th IEEE International NEWCAS Conference.

[38]  Reza Molavi,et al.  A low‐power technique to boost the output amplitude of multi gigahertz push‐push LC VCOS , 2013 .

[39]  A. Knights,et al.  Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm , 2005 .

[40]  W. Bogaerts,et al.  Grating-Based Optical Fiber Interfaces for Silicon-on-Insulator Photonic Integrated Circuits , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  R.A. Blauschild,et al.  A 4-terminal wide-band monolithic amplifier , 1981, IEEE Journal of Solid-State Circuits.

[42]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[43]  Mabrouki Aya,et al.  A variable gain 2.4-GHz CMOS low noise amplifier employing body biasing , 2009, 2009 Ph.D. Research in Microelectronics and Electronics.

[44]  L. D. Tzeng,et al.  A 1.06 Gb/s -31 dBm to 0 dBm BiCMOS optical preamplifier featuring adaptive transimpedance , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[45]  Wei Shi,et al.  Silicon photonic grating-assisted, contra-directional couplers. , 2013, Optics express.

[46]  Jian H. Zhao,et al.  Optical Filter Design and Analysis , 1999 .

[47]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[48]  Di Liang,et al.  Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate , 2008 .

[49]  Da-Chiang Chang,et al.  A 0.6 V, 4.32 mW, 68 GHz Low Phase-Noise VCO With Intrinsic-Tuned Technique in 0.13 $\mu$m CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[50]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[51]  Jing Li,et al.  Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides , 2011 .

[52]  Shahriar Mirabbasi,et al.  A wideband CMOS LNA design approach , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[53]  Alexander V. Rylyakov,et al.  Monolithic Silicon Integration of Scaled Photonic Switch Fabrics, CMOS Logic, and Device Driver Circuits , 2014, Journal of Lightwave Technology.

[54]  Guo-Qiang Lo,et al.  A 25 Gb/s Silicon Photonics Platform , 2012 .

[55]  T. Suzuki,et al.  A 90Gb/s 2:1 multiplexer IC in InP-based HEMT technology , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[56]  Sotiris Bantas,et al.  RF passive device modeling and characterization in 65nm CMOS technology , 2013, International Symposium on Quality Electronic Design (ISQED).

[57]  R.B. Staszewski,et al.  The First Fully Integrated Quad-Band GSM/GPRS Receiver in a 90-nm Digital CMOS Process , 2006, IEEE Journal of Solid-State Circuits.

[58]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[59]  A. H. M. van Roermund,et al.  Analysis and Design of a 60 GHz Wideband Voltage-Voltage Transformer Feedback LNA , 2012, IEEE Transactions on Microwave Theory and Techniques.

[60]  A. Hati,et al.  Microwave Optoelectronic Oscillator with Optical Gain , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[61]  Huei Wang,et al.  Advances in Silicon Based Millimeter-Wave Monolithic Integrated Circuits , 2014, Micromachines.

[62]  T Pinguet,et al.  A Grating-Coupler-Enabled CMOS Photonics Platform , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[63]  G. Niu,et al.  Modeling and Characterization of Intermodulation Linearity on a 90-nm RF CMOS Technology , 2009, IEEE Transactions on Microwave Theory and Techniques.

[64]  Shahriar Mirabbasi,et al.  On the use of body biasing to control gain, linearity, and noise figure of a mm-wave CMOS LNA , 2010, Proceedings of the 8th IEEE International NEWCAS Conference 2010.

[65]  Bertan Bakkaloglu,et al.  A 0.13-µm CMOS local oscillator for 60-GHz applications based on push-push characteristic of capacitive degeneration , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[66]  P. Gunupudi,et al.  Modeling scattering and diffraction elements in a SPICE like optoelectronic framework , 2009, Photonics North.

[67]  M. Lipson,et al.  CMOS-compatible athermal silicon microring resonators. , 2009, Optics express.

[68]  K. S. Yeo,et al.  A 1.2 V 2.4 GHz low spur CMOS PLL synthesizer with a gain boosted charge pump for a batteryless transceiver , 2012, 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[69]  W. S. Hobson,et al.  Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits , 1999, IEEE Photonics Technology Letters.

[70]  M.T. Yang,et al.  60-GHz PA and LNA in 90-nm RF-CMOS , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[71]  Kresten Yvind,et al.  Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency. , 2014, Optics letters.

[72]  Sorin P. Voinigescu,et al.  Design of a Dual W- and D-Band PLL , 2011, IEEE Journal of Solid-State Circuits.

[73]  Y. Deval,et al.  A 3-10 GHz 0.13/spl mu/m CMOS body effect reuse LNA for UWB applications , 2005, The 3rd International IEEE-NEWCAS Conference, 2005..

[74]  Shahriar Mirabbasi,et al.  An ultra-low-voltage ultra-low-power CMOS active mixer , 2013 .

[75]  Vishal Saxena,et al.  Compact Verilog-A modeling of silicon traveling-wave modulator for hybrid CMOS photonic circuit design , 2014, 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS).

[76]  Wei Shi,et al.  Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. , 2014, Optics express.

[77]  M. Amann,et al.  Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning. , 2011, Optics express.

[78]  David K. Fork,et al.  Out-of-plane high-Q inductors on low-resistance silicon , 2003 .

[79]  Michiel Steyaert,et al.  Low-Power, 10-Gbps 1.5-Vpp differential CMOS driver for a silicon electro-optic ring modulator , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[80]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[81]  D. Van Thourhout,et al.  Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[82]  Fu-Shun Lai,et al.  Analyses of distortions and cross modulations in erbium-doped fiber amplifiers , 1999 .

[83]  Stephen Y. Chou,et al.  Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings , 1996 .

[84]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[85]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[86]  Nikos Pleros,et al.  Active plasmonics in WDM traffic switching applications , 2012, Scientific Reports.

[87]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[88]  J. Cunningham,et al.  Thermally tunable silicon racetrack resonators with ultralow tuning power. , 2010, Optics express.

[89]  G. Lo,et al.  A high-responsivity photodetector absent metal-germanium direct contact. , 2014, Optics express.

[90]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[91]  Ying Li,et al.  Experimental characterization and simulation of RF intermodulation linearity in a 90 nm RF CMOS technology , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[92]  S. Palermo,et al.  Compact Verilog-A modeling of silicon carrier-injection ring modulators , 2015, 2015 IEEE Optical Interconnects Conference (OI).

[93]  Margherita Pillan,et al.  Convergence improvements of the harmonic balance method , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[94]  Chia-Chin Chong,et al.  An Overview of Multigigabit Wireless through Millimeter Wave Technology: Potentials and Technical Challenges , 2007, EURASIP J. Wirel. Commun. Netw..

[95]  Ali M. Niknejad,et al.  A W-Band Low-Noise PLL With a Fundamental VCO in SiGe for Millimeter-Wave Applications , 2014, IEEE Transactions on Microwave Theory and Techniques.

[96]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[97]  Mahmoud Kamarei,et al.  Sub-nH Inductor Modeling and Design in 90-nm CMOS Technology for Millimeter-Wave Applications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[98]  Tymon Barwicz,et al.  Low-Cost Interfacing of Fibers to Nanophotonic Waveguides: Design for Fabrication and Assembly Tolerances , 2014, IEEE Photonics Journal.

[99]  Michael Frueh,et al.  Design Of Integrated Circuits For Optical Communications , 2016 .

[101]  Howard C. Luong,et al.  Design Theory and Performance of 1-GHz CMOS Downconversion and Upconversion Mixers , 2000 .

[102]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[103]  Timo Rahkonen,et al.  5th order multi-tone Volterra simulator with component-level output , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[104]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[105]  Kari Halonen,et al.  Integrated Amplifier Circuits for 60 GHz Broadband Telecommunication , 2005 .

[106]  K. Bergman,et al.  Thermal stabilization of a microring modulator using feedback control. , 2012, Optics express.

[107]  Lukas Chrostowski,et al.  High performance Vernier racetrack resonators. , 2012, Optics letters.

[108]  L. Richard Carley,et al.  Micromachined high-Q inductors in a 0.18-μm copper interconnect low-k dielectric CMOS process , 2002, IEEE J. Solid State Circuits.

[109]  L. Chirovsky,et al.  16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit , 2000, IEEE Photonics Technology Letters.

[110]  Xu Wang,et al.  Large-scale silicon photonics circuit design , 2014, Photonics Asia.

[111]  Shahriar Mirabbasi,et al.  A 4-stage 60-GHz low-noise amplifier in 65-nm CMOS with body biasing to control gain, linearity, and input matching , 2012 .

[112]  A. Hajimiri,et al.  Bandwidth enhancement for transimpedance amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[113]  T. Smy,et al.  Self-consistent simulation of optoelectronic circuits using a SPICE-like framework , 2009, 2009 IEEE Workshop on Signal Propagation on Interconnects.

[114]  L. Chrostowski,et al.  Silicon Photonics Design: From Devices to Systems , 2015 .

[115]  Elia Palange,et al.  Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si , 1998 .

[116]  J. Buckwalter,et al.  A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS , 2013, IEEE Photonics Technology Letters.

[117]  Ashok V. Krishnamoorthy,et al.  Computer Systems Based on Silicon Photonic Interconnects A proposed supercomputer-on-a-chip with optical interconnections between processing elements will require development of new lower-energy optical components and new circuit architectures that match electrical datapaths to complementary optical , 2009 .

[118]  Mohammad Maymandi-Nejad,et al.  Analytical model for CMOS cross-coupled LC-tank oscillator , 2014, IET Circuits Devices Syst..

[119]  H. Thacker,et al.  25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. , 2011, Optics express.

[120]  Jun‐Bo Yoon,et al.  Experimental analysis of the effect of metal thickness on the quality factor in integrated spiral inductors for RF ICs , 2004 .

[121]  Akio Ushida,et al.  Distortion analysis of nonlinear networks based on SPICE-oriented harmonic balance method , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[122]  Wenhua Chen,et al.  'New' solutions of Class-E power amplifier with finite dc feed inductor at any duty ratio , 2014, IET Circuits Devices Syst..

[123]  Nicolas A. F. Jaeger,et al.  Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip , 2015, 2015 IEEE Optical Interconnects Conference (OI).

[124]  J. Long,et al.  A Q-factor enhancement technique for MMIC inductors , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[125]  Vladimir Stojanovic,et al.  Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA. , 2015, Optics express.

[126]  Xu Wang,et al.  A complete design flow for silicon photonics , 2014, Photonics Europe.

[127]  Shahriar Mirabbasi,et al.  A Class-C self-mixing-VCO architecture with high tuning-range and low phase-noise for mm-wave applications , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[128]  T. J. Sleboda,et al.  High Contrast 40gbit/s Optical Modulation in Silicon References and Links , 2022 .

[129]  Nan Guo,et al.  60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results , 2007, EURASIP J. Wirel. Commun. Netw..

[130]  Edgar Sanchez-Sinencio,et al.  CMOS transconductance multipliers: a tutorial , 1998 .

[131]  S.S.A. Obayya,et al.  Accurate Nonlinear Volterra Series Analysis for Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Photonics Technology Letters.

[132]  Timo Rahkonen,et al.  Distortion in RF power amplifiers , 2003 .

[133]  Win Chaivipas,et al.  A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-Wave Applications , 2011, IEEE Journal of Solid-State Circuits.

[134]  D. Hillerkuss,et al.  Silicon carrier-depletion-based Mach-Zehnder and ring modulators with different doping patterns for telecommunication and optical interconnect , 2012, 2012 14th International Conference on Transparent Optical Networks (ICTON).

[135]  Joy Laskar,et al.  A 90nm CMOS 60GHz Radio , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[136]  Changhua Cao,et al.  Millimeter-Wave CMOS Voltage-Controlled Oscillators , 2007, 2007 IEEE Radio and Wireless Symposium.

[137]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[138]  M. S. Lu,et al.  A 5.8-GHz VCO with CMOS-compatible MEMS inductors , 2007 .

[139]  Ashok V. Krishnamoorthy,et al.  Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects , 2011 .

[140]  Gee-Kung Chang,et al.  1–100GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications , 2013, 2013 IEEE International Topical Meeting on Microwave Photonics (MWP).

[141]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[142]  Ali M. Niknejad,et al.  A Robust 24mW 60GHz Receiver in 90nm Standard CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[143]  E. Yoon,et al.  CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF ICs , 2002 .

[144]  Wei Shi,et al.  Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon. , 2013, Optics express.

[145]  L. Cerutti,et al.  GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 $\mu$ m at Room Temperature , 2010, IEEE Photonics Technology Letters.

[146]  Trung-Kien Nguyen,et al.  CMOS low-noise amplifier design optimization techniques , 2004, IEEE Transactions on Microwave Theory and Techniques.

[147]  Jackson Klein,et al.  Design methodologies for silicon photonic integrated circuits , 2014, Photonics West - Optoelectronic Materials and Devices.

[148]  Yun Wang Grating coupler design based on silicon-on-insulator , 2013 .

[149]  Edgar Sánchez-Sinencio,et al.  A Wideband Millimeter-Wave Frequency Synthesis Architecture Using Multi-Order Harmonic-Synthesis and Variable $N$-Push Frequency Multiplication , 2011, IEEE Journal of Solid-State Circuits.

[150]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[151]  S. Balkir,et al.  A Synthesis Tool for CMOS RF Low-Noise Amplifiers , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[152]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[153]  D. Kucharski,et al.  A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13- $\mu{\hbox {m}}$ CMOS SOI Technology , 2006, IEEE Journal of Solid-State Circuits.

[154]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[155]  Cheng Li,et al.  An Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter , 2014, IEEE Design & Test.

[156]  J. Marti,et al.  High-speed modulation of a compact silicon ring resonator , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[157]  Stephen A. Maas,et al.  Nonlinear Microwave and RF Circuits , 2003 .

[158]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[159]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[160]  Youngmin Kim,et al.  A 60 GHz Cascode Variable-Gain Low-Noise Amplifier With Phase Compensation in a 0.13 $\mu{\rm m}$ CMOS Technology , 2012, IEEE Microwave and Wireless Components Letters.

[161]  Nathan J. Gomes,et al.  Next Generation Wireless Communications Using Radio over Fiber , 2012 .

[162]  K. Williams,et al.  Microwave photonics , 2002 .

[163]  Colin C. McAndrew,et al.  Best Practices for Compact Modeling in Verilog-A , 2015, IEEE Journal of the Electron Devices Society.

[164]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[165]  M S J Steyaert,et al.  A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate–Drain Impedance-Balancing Techniques , 2011, IEEE Transactions on Microwave Theory and Techniques.

[166]  E. Alon,et al.  Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver. , 2011, Optics express.

[167]  G. Lo,et al.  Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. , 2013, Optics express.

[168]  Pasqualina M. Sarro,et al.  Surface micromachined tuneable interferometer array , 1994 .

[169]  Ranjit Gharpurey,et al.  A 57-to-75 GHz dual-mode wide-band reconfigurable oscillator in 65nm CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[170]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .