Combinatorial Constructions of Optimal Three-Dimensional Optical Orthogonal Codes

In this paper, we study three-dimensional (u × v× w, k, λ) optical orthogonal codes (OOCs) with at most one optical pulse per wavelength/time plane (AM-OPP) restriction, which is denoted by AM-OPP 3-D (u × v × w, k, λ)-OOC. We build an equivalence relation between such an OOC and a certain combinatorial subject, called a w-cyclic group divisible packing of type (vw)u. By this link, the upper bound of the number of codewords is improved and some new combinatorial constructions are presented. As an application, the exact number of codewords of an optimal AM-OPP 3-D (u × v × w, 3, 1)-OOC is determined for any positive integers v, w, and u ≠ 2 (mod 6) with some possible exceptions.

[1]  Yanxun Chang,et al.  A New Class of Optimal Optical Orthogonal Codes With Weight Five , 2004, IEEE Trans. Inf. Theory.

[2]  Anita Pasotti,et al.  Further progress on difference families with block size 4 or 5 , 2010, Des. Codes Cryptogr..

[3]  N. Park,et al.  A new family of space/wavelength/time spread three-dimensional optical code for OCDMA networks , 2000, Journal of Lightwave Technology.

[4]  Yanxun Chang,et al.  The spectrum of cyclic BSA(ν, 3, λ; α) with α = 2, 3 , 2005 .

[5]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..

[6]  Kenneth W. Shum,et al.  Optimal three-dimensional optical orthogonal codes of weight three , 2015, Des. Codes Cryptogr..

[7]  Guu-chang Yang,et al.  Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks , 1997, IEEE Trans. Commun..

[8]  Yanxun Chang,et al.  Optimal (4up, 5, 1) optical orthogonal codes , 2004 .

[9]  G. Ge,et al.  Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.

[10]  Dean G. Hoffman,et al.  A New Class of Group Divisible Designs with Block Size Three , 1992, J. Comb. Theory, Ser. A.

[11]  Hedvig Mohácsy,et al.  Candelabra systems and designs , 2002 .

[12]  P. Vijay Kumar,et al.  Improved constructions and bounds for 2-D optical orthogonal codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[13]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[14]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[15]  Jianxing Yin,et al.  Two-Dimensional Optical Orthogonal Codes and Semicyclic Group Divisible Designs , 2010, IEEE Transactions on Information Theory.

[16]  Yanxun Chang,et al.  Combinatorial constructions of optimal optical orthogonal codes with weight 4 , 2003, IEEE Trans. Inf. Theory.

[17]  Yanxun Chang,et al.  Constructions of optimal optical orthogonal codes with weight five , 2005 .

[18]  P. Vijay Kumar,et al.  Large Families of Asymptotically Optimal Two-Dimensional Optical Orthogonal Codes , 2012, IEEE Transactions on Information Theory.

[19]  Tao Feng,et al.  Semi–cyclic Holey Group Divisible Designs and Applications to Sampling Designs and Optical Orthogonal Codes , 2016 .

[20]  Jianxing Yin Packing designs with equal-sized holes ☆ , 2001 .

[21]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[22]  Kun Qiu,et al.  Construction for optimal optical orthogonal codes , 2002, IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions.

[23]  R. Julian R. Abel,et al.  Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.

[24]  Yanxun Chang,et al.  Further results on optimal optical orthogonal codes with weight 4 , 2004, Discret. Math..

[25]  Tuvi Etzion,et al.  Constructions for optimal constant weight cyclically permutable codes and difference families , 1995, IEEE Trans. Inf. Theory.

[26]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.