A sequential convex optimization method for multimaterial compliance design problems

Abstract This paper presents a sequential convex optimization method for minimum compliance design of multimaterial problems. The proposed method uses a multimaterial parametrization based on SIMP or RAMP penalization. At each iteration of the algorithm, a convex subproblem is constructed by forming a nonlinear, convex approximation of the penalized compliance based on a linearization of the stiffness matrix. Subsequent solutions of the convex subproblems form a non-increasing sequence of compliance values. The subproblems are solved using a tailored inexact Newton–Krylov interior point method that leverages relatively inexpensive Hessian-vector products. The algorithm is demonstrated on a series of isotropic and orthotropic multimaterial plane stress design problems.

[1]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[2]  Erik Lund,et al.  Material interpolation schemes for unified topology and multi-material optimization , 2011 .

[3]  Graeme J. Kennedy A full-space barrier method for stress-constrained discrete material design optimization , 2016 .

[4]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[5]  Xu Guo,et al.  Stress-related topology optimization of continuum structures involving multi-phase materials , 2014 .

[6]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[9]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[10]  Erik Lund,et al.  Optimization strategies for discrete multi-material stiffness optimization , 2011 .

[11]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[12]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[13]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[14]  Arkadi Nemirovski,et al.  Potential Reduction Polynomial Time Method for Truss Topology Design , 1994, SIAM J. Optim..

[15]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[16]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[17]  E. Lund Discrete Material and Thickness Optimization of laminated composite structures including failure criteria , 2017, Structural and Multidisciplinary Optimization.

[18]  Erik Lund,et al.  Buckling topology optimization of laminated multi-material composite shell structures , 2009 .

[19]  Erik Lund,et al.  DMTO – a method for Discrete Material and Thickness Optimization of laminated composite structures , 2014 .

[20]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[21]  Martin P. Bendsøe,et al.  A New Method for Optimal Truss Topology Design , 1993, SIAM J. Optim..

[22]  K. Svanberg,et al.  An alternative interpolation scheme for minimum compliance topology optimization , 2001 .

[23]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[24]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[25]  Kai A. James,et al.  Multiphase topology design with optimal material selection using an inverse p‐norm function , 2018 .

[26]  Glaucio H. Paulino,et al.  Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity , 2017, Structural and Multidisciplinary Optimization.

[27]  Tong Gao,et al.  A mass constraint formulation for structural topology optimization with multiphase materials , 2011 .

[28]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[29]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[30]  Erik Lund,et al.  Topology and thickness optimization of laminated composites including manufacturing constraints , 2013 .

[31]  K. Svanberg,et al.  On the convexity and concavity of compliances , 1994 .

[32]  Joaquim R. R. A. Martins,et al.  A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures , 2014 .

[33]  Jorge Nocedal,et al.  A starting point strategy for nonlinear interior methods , 2004, Appl. Math. Lett..

[34]  Zhi Wang,et al.  The second order adjoint analysis: Theory and applications , 1992 .

[35]  C. S. Jog,et al.  Stability of finite element models for distributed-parameter optimization and topology design , 1996 .