Mitochondrial genome evolution in parasitic plants

[1]  A. Galecki JULIAN J. FARAWAY. Extending the Linear Model with R: Generalized Linear, Mixed Effects, and Nonparametric Regression Models, 2nd edition. Boca Raton: CRC Press , 2017 .

[2]  D. Mabberley Mabberley's Plant-Book , 2017 .

[3]  P. Taberlet,et al.  Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae). , 2016, Annals of botany.

[4]  S. Renner,et al.  Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales , 2016, Genome biology and evolution.

[5]  Andrew J. Roger,et al.  A Eukaryote without a Mitochondrial Organelle , 2016, Current Biology.

[6]  S. Wicke,et al.  Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. , 2016, The New phytologist.

[7]  Sarah T. Wagner,et al.  Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae) , 2016, Genome biology and evolution.

[8]  Weishu Fan Comparative evolutionary analysis of organellar genomic diversity in green plants , 2016 .

[9]  Susanne S. Renner,et al.  The Plastomes of Two Species in the Endoparasite Genus Pilostyles (Apodanthaceae) Each Retain Just Five or Six Possibly Functional Genes , 2015, Genome biology and evolution.

[10]  G. Petersen,et al.  Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria , 2015, Scientific Reports.

[11]  G. Petersen,et al.  Plastome Evolution in Hemiparasitic Mistletoes , 2015, Genome biology and evolution.

[12]  J. Palmer,et al.  Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes , 2015, Proceedings of the National Academy of Sciences.

[13]  J. Der,et al.  Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae , 2015 .

[14]  J. Naumann Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Hydnora visseri (Hydnoraceae) , 2015 .

[15]  E. Cappellini,et al.  Optimization of DNA Recovery and Amplification from Non-Carbonized Archaeobotanical Remains , 2014, PloS one.

[16]  Rachel S. Meyer,et al.  Possible Loss of the Chloroplast Genome in the Parasitic Flowering Plant Rafflesia lagascae (Rafflesiaceae) , 2014, Molecular biology and evolution.

[17]  M. Logacheva,et al.  The Plastid Genome of Mycoheterotrophic Monocot Petrosavia stellaris Exhibits Both Gene Losses and Multiple Rearrangements , 2014, Genome biology and evolution.

[18]  Yan Zhang,et al.  Mechanisms of Functional and Physical Genome Reduction in Photosynthetic and Nonphotosynthetic Parasitic Plants of the Broomrape Family[W][OPEN] , 2013, Plant Cell.

[19]  C. Putonti,et al.  Where does Neisseria acquire foreign DNA from: an examination of the source of genomic and pathogenic islands and the evolution of the Neisseria genus , 2013, BMC Evolutionary Biology.

[20]  J. Stajich,et al.  Shared Signatures of Parasitism and Phylogenomics Unite Cryptomycota and Microsporidia , 2013, Current Biology.

[21]  J. Aury,et al.  The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution , 2013, PloS one.

[22]  R. Lanfear,et al.  Parasitic plants have increased rates of molecular evolution across all three genomes , 2013, BMC Evolutionary Biology.

[23]  L. Bromham,et al.  Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae , 2013, BMC Evolutionary Biology.

[24]  L. Bromham,et al.  Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae , 2013, BMC Evolutionary Biology.

[25]  J. Li,et al.  Atbf1 Regulates Pubertal Mammary Gland Development Likely by Inhibiting the Pro-Proliferative Function of Estrogen-ER Signaling , 2012, PloS one.

[26]  Jerrold I. Davis,et al.  The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation. , 2012, American journal of botany.

[27]  Stinus Lindgreen,et al.  AdapterRemoval: easy cleaning of next-generation sequencing reads , 2012, BMC Research Notes.

[28]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[29]  R. Bock,et al.  Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine , 2012, Nucleic acids research.

[30]  Wenpan Dong,et al.  Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding , 2012, PloS one.

[31]  S. Stefanović,et al.  Plastid genome evolution in mycoheterotrophic Ericaceae , 2012, Plant Molecular Biology.

[32]  Andrew J. Alverson,et al.  Rapid Evolution of Enormous, Multichromosomal Genomes in Flowering Plant Mitochondria with Exceptionally High Mutation Rates , 2012, PLoS biology.

[33]  Indra Neil Sarkar,et al.  The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy , 2012, Briefings Bioinform..

[34]  J. Tregear,et al.  SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis , 2012, BMC Plant Biology.

[35]  R. Guan,et al.  Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica , 2011, BMC Genomics.

[36]  M. Logacheva,et al.  Sequencing and Analysis of Plastid Genome in Mycoheterotrophic Orchid Neottia nidus-avis , 2011, Genome biology and evolution.

[37]  Andrew J. Alverson,et al.  The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats , 2011, PloS one.

[38]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[39]  Y. Qiu,et al.  Angiosperm phylogeny inferred from sequences of four mitochondrial genes , 2010 .

[40]  Matthias Meyer,et al.  Illumina sequencing library preparation for highly multiplexed target capture and sequencing. , 2010, Cold Spring Harbor protocols.

[41]  B. Zonneveld,et al.  New record holders for maximum genome size in eudicots and monocots. , 2010 .

[42]  B. Zonneveld Genome Sizes in Hepatica Mill: (Ranunculaceae) Show a Loss of DNA, Not a Gain, in Polyploids , 2010 .

[43]  J. Der,et al.  A revised classification of Santalales , 2010 .

[44]  Claude W dePamphilis,et al.  The evolution of parasitism in plants. , 2010, Trends in plant science.

[45]  D. Hillis,et al.  Taxon sampling and the accuracy of phylogenetic analyses , 2008 .

[46]  J. Boore,et al.  Bmc Plant Biology , 2007 .

[47]  Uwe G Maier,et al.  Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii , 2007, BMC Plant Biology.

[48]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[49]  Jeffrey P. Mower,et al.  Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae , 2005, BMC Evolutionary Biology.

[50]  J. Faraway Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models , 2005 .

[51]  J. Der,et al.  Discovery of the photosynthetic relatives of the "Maltese mushroom" Cynomorium , 2005, BMC Evolutionary Biology.

[52]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[53]  D. Nickrent,et al.  High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants , 1994, Journal of Molecular Evolution.

[54]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[55]  J. Palmer,et al.  Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. , 2003, Molecular phylogenetics and evolution.

[56]  H. Handa,et al.  The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. , 2003, Nucleic acids research.

[57]  Y. Notsu,et al.  The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants , 2002, Molecular Genetics and Genomics.

[58]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[59]  R. Olmstead,et al.  Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. , 2000, American journal of botany.

[60]  Yangrae Cho,et al.  Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Boore Animal mitochondrial genomes. , 1999, Nucleic acids research.

[62]  B. Geils,et al.  Hosts of Viscum album , 1998 .

[63]  A. Sasaki,et al.  Host-parasite arms race in mutation modifications: indefinite escalation despite a heavy load? , 1996, Journal of theoretical biology.

[64]  A. Brennicke,et al.  The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera. , 1992, Nucleic acids research.

[65]  J. Palmer,et al.  Contrasting modes and tempos of genome evolution in land plant organelles. , 1990, Trends in genetics : TIG.

[66]  Wen-Hsiung Li,et al.  Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[67]  U Lagerkvist,et al.  "Two out of three": an alternative method for codon reading. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Müller,et al.  Superoxide dismutase in the anaerobic flagellates, Tritrichomonas foetus and Monocercomonas sp. , 1974, The Journal of biological chemistry.