On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides.

Versatile Brønsted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site, and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a "cyclic" behavior in the transition state characteristics upon change of the active transition metal of the oxide.

[1]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[2]  T. Bligaard,et al.  Volcano Relation for the Deacon Process over Transition‐Metal Oxides , 2010 .

[3]  Mitch Jac By JACS AT 125 , 2010 .

[4]  M. Mavrikakis,et al.  Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. , 2005, The journal of physical chemistry. B.

[5]  Heine Anton Hansen,et al.  Formation energies of rutile metal dioxides using density functional theory , 2009 .

[6]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[7]  J. Brønsted Acid and Basic Catalysis. , 1928 .

[8]  J. Carrasco,et al.  First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides. , 2004, Physical review letters.

[9]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[10]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[11]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[12]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[13]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[14]  A. Alavi,et al.  Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. , 2003, Journal of the American Chemical Society.

[15]  R. Nieminen Issues in first-principles calculations for defects in semiconductors and oxides , 2009 .

[16]  A. Vojvodić,et al.  From electronic structure to catalytic activity: a single descriptor for adsorption and reactivity on transition-metal carbides. , 2009, Physical review letters.

[17]  Søren Dahl,et al.  The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts , 2001 .

[18]  L. Kronik,et al.  Orbital-dependent density functionals: Theory and applications , 2008 .

[19]  M. V. Ganduglia-Pirovano,et al.  Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges , 2007 .

[20]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  M. Witko,et al.  Density functional cluster studies on the (010) surface of vanadium pentoxide , 1997 .

[23]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[24]  Thomas Bligaard,et al.  The nature of the active site in heterogeneous metal catalysis. , 2008, Chemical Society reviews.

[25]  H. Metiu,et al.  Catalysis by doped oxides : CO oxidation by AuxCe1- xO2 , 2007 .

[26]  Thomas Bligaard,et al.  Trends in the catalytic CO oxidation activity of nanoparticles. , 2008, Angewandte Chemie.

[27]  Horia Metiu,et al.  Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis , 2006 .

[28]  J. Nørskov,et al.  Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. , 2008, Angewandte Chemie.

[29]  P. Hu,et al.  General trends in CO dissociation on transition metal surfaces , 2001 .

[30]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[31]  M. Neurock,et al.  Electronic Factors Governing Ethylene Hydrogenation and Dehydrogenation Activity of Pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) Surfaces , 2000 .

[32]  M. G. Evans,et al.  Inertia and driving force of chemical reactions , 1938 .

[33]  J. Nørskov,et al.  Universal Brønsted-Evans-Polanyi Relations for C–C, C–O, C–N, N–O, N–N, and O–O Dissociation Reactions , 2011 .

[34]  G. Pacchioni Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. , 2008, The Journal of chemical physics.

[35]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[36]  C-H bond activation over metal oxides: a new insight into the dissociation kinetics from density functional theory. , 2008, The Journal of chemical physics.

[37]  P. Hu,et al.  Insights into the Staggered Nature of Hydrogenation Reactivity over the 4d Transition Metals , 2009 .

[38]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[39]  John P. Perdew,et al.  Molecular and solid‐state tests of density functional approximations: LSD, GGAs, and meta‐GGAs , 1999 .

[40]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .