Data and Task Based Effectiveness of Basic Visualizations

Visualizations of tabular data are widely used; understanding their effectiveness in different task and data contexts is fundamental to scaling their impact. However, little is known about how basic tabular data visualizations perform across varying data analysis tasks and data attribute types. In this paper, we report results from a crowdsourced experiment to evaluate the effectiveness of five visualization types --- Table, Line Chart, Bar Chart, Scatterplot, and Pie Chart --- across ten common data analysis tasks and three data attribute types using two real world datasets. We found the effectiveness of these visualization types significantly varies across task and data attribute types, suggesting that visualization design would benefit from considering context dependent effectiveness. Based on our findings, we derive recommendations on which visualizations to choose based on different task and data contexts.

[1]  Katy Börner,et al.  Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors , 2016, Inf. Vis..

[2]  Jeffrey Heer,et al.  Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations , 2009, CHI.

[3]  M. Granger Morgan,et al.  Graphical Communication of Uncertain Quantities to Nontechnical People , 1987 .

[4]  Jeffrey Heer,et al.  Beyond Weber's Law: A Second Look at Ranking Visualizations of Correlation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[5]  R McGill,et al.  Graphical Perception and Graphical Methods for Analyzing Scientific Data , 1985, Science.

[6]  S. Lewandowsky,et al.  Displaying proportions and percentages , 1991 .

[7]  Sean A. Munson,et al.  When (ish) is My Bus?: User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems , 2016, CHI.

[8]  H. V. Henderson,et al.  Building Multiple Regression Models Interactively , 1981 .

[9]  Monica M. C. Schraefel,et al.  TouchViz: a case study comparing two interfaces for data analytics on tablets , 2013, CHI.

[10]  Robert Kosara,et al.  Judgment Error in Pie Chart Variations , 2016, EuroVis.

[11]  Walter Crosby Eells,et al.  The Relative Merits of Circles and Bars for Representing Component Parts , 1926 .

[12]  Jeffery. M. Zacks,et al.  Bars and lines: A study of graphic communication , 1999, Memory & cognition.

[13]  Kanit Wongsuphasawat,et al.  Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[14]  W. A. P. Pridmore Data Reduction: Analysing and Interpreting Statistical Data , 1976 .

[15]  S. Kosslyn Understanding charts and graphs , 1989 .

[16]  Tamara Munzner,et al.  Overview Use in Multiple Visual Information Resolution Interfaces , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Jeffrey Heer,et al.  Perceptual Guidelines for Creating Rectangular Treemaps , 2010, IEEE Transactions on Visualization and Computer Graphics.

[18]  Steven Franconeri,et al.  Ranking Visualizations of Correlation Using Weber's Law , 2014, IEEE Transactions on Visualization and Computer Graphics.

[19]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[20]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[21]  John Stasko,et al.  BEST PAPER: A Knowledge Task-Based Framework for Design and Evaluation of Information Visualizations , 2004 .

[22]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[23]  M. Dambacher,et al.  Graphs versus numbers: How information format affects risk aversion in gambling , 2016, Judgment and Decision Making.

[24]  D J Gillan,et al.  A Componential Model of Human Interaction with Graphs: 1. Linear Regression Modeling , 1994, Human factors.

[25]  김성기 비쥬얼 다이나믹 마이닝 툴을 이용한 신속한 의사결정 : Spotfire , 2008 .

[26]  Alan M. MacEachren,et al.  How Maps Work - Representation, Visualization, and Design , 1995 .

[27]  Zhen Wen,et al.  Behavior-driven visualization recommendation , 2009, IUI.

[28]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[29]  Jeffrey Heer,et al.  Crowdsourcing graphical perception: using mechanical turk to assess visualization design , 2010, CHI.

[30]  Aditya G. Parameswaran,et al.  SEEDB: Automatically Generating Query Visualizations , 2014, Proc. VLDB Endow..

[31]  Ben Shneiderman,et al.  Information Visualization , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[32]  Gilles Venturini,et al.  VizAssist: an interactive user assistant for visual data mining , 2016, The Visual Computer.

[33]  Sung-Hee Kim,et al.  VLAT: Development of a Visualization Literacy Assessment Test , 2017, IEEE Transactions on Visualization and Computer Graphics.

[34]  Bongshin Lee,et al.  A Comparative Evaluation on Online Learning Approaches using Parallel Coordinate Visualization , 2016, CHI.

[35]  Pat Hanrahan,et al.  Arc Length-Based Aspect Ratio Selection , 2011, IEEE Transactions on Visualization and Computer Graphics.

[36]  L. Tremmel The Visual Separability of Plotting Symbols in Scatterplots , 1995 .

[37]  John T. Stasko,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[38]  Michael Gleicher,et al.  Error Bars Considered Harmful: Exploring Alternate Encodings for Mean and Error , 2014, IEEE Transactions on Visualization and Computer Graphics.

[39]  Beatriz Sousa Santos,et al.  Evaluating Visualization techniques and tools: what are the main issues? , 2007 .

[40]  Stephanie Boehm,et al.  Information Dashboard Design The Effective Visual Communication Of Data , 2016 .

[41]  Anshul Vikram Pandey,et al.  Towards Understanding Human Similarity Perception in the Analysis of Large Sets of Scatter Plots , 2016, CHI.

[42]  S. Lewandowsky,et al.  Discriminating strata in scatterplots , 1989 .

[43]  B. G. Shortridge Stimulus Processing Models from Psychology: Can We Use Them in Cartography? , 1982 .

[44]  Tamara Munzner,et al.  A Multi-Level Typology of Abstract Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[45]  Karrie Karahalios,et al.  DataTone: Managing Ambiguity in Natural Language Interfaces for Data Visualization , 2015, UIST.

[46]  Stephen G. Kobourov,et al.  Node, Node-Link, and Node-Link-Group Diagrams: An Evaluation , 2014, IEEE Transactions on Visualization and Computer Graphics.

[47]  David K. Simkin,et al.  An Information-Processing Analysis of Graph Perception , 1987 .

[48]  W. Cleveland,et al.  Variables on Scatterplots Look More Highly Correlated When the Scales Are Increased , 1982, Science.

[49]  Jeffrey Heer,et al.  Multi-Scale Banking to 45 Degrees , 2006, IEEE Transactions on Visualization and Computer Graphics.

[50]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[51]  Steven Pinker,et al.  A theory of graph comprehension. , 1990 .

[52]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[53]  Frederick E. Croxton,et al.  Bar Charts versus Circle Diagrams , 1927 .

[54]  M. Galesic,et al.  Corrigendum to: "Who profits from visual aids: Overcoming challenges in people's understanding of risks" [Social Science & Medicine, 70 (2010), 1019-1025. , 2010, Social science & medicine.

[55]  Pat Hanrahan,et al.  An Extension of Wilkinson’s Algorithm for Positioning Tick Labels on Axes , 2010, IEEE Transactions on Visualization and Computer Graphics.

[56]  Vidya Setlur,et al.  Four Experiments on the Perception of Bar Charts , 2014, IEEE Transactions on Visualization and Computer Graphics.