Conic version of Loewner–John ellipsoid theorem
暂无分享,去创建一个
[1] H. Wolkowicz,et al. Exponential nonnegativity on the ice cream cone , 1991 .
[2] Alberto Seeger,et al. Centers and partial volumes of convex cones I. Basic theory , 2015 .
[3] Jean B. Lasserre,et al. A generalization of Löwner-John’s ellipsoid theorem , 2013, Mathematical Programming.
[4] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[5] Matthias J. Weber,et al. Davis' Convexity Theorem and Extremal Ellipsoids , 2009, 0907.1158.
[6] Roger J.-B. Wets,et al. Continuity of some convex-cone-valued mappings , 1967 .
[8] F. John. Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .
[9] Sebastian Sitarz. The medal points' incenter for rankings in sport , 2013, Appl. Math. Lett..
[10] A. Seeger,et al. Solidity indices for convex cones , 2012 .
[11] Katta G. Murty,et al. CP-rays in simplicial cones , 1990, Math. Program..
[12] Osman Güler,et al. Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..
[14] R. Correa,et al. Directional derivative of a minimax function , 1985 .
[15] A. Berman,et al. Nonnegative matrices in dynamic systems , 1979 .
[16] René Henrion,et al. Inradius and Circumradius of Various Convex Cones Arising in Applications , 2010 .
[17] M. Henk. Löwner – John Ellipsoids , 2012 .
[18] Peter M. Gruber,et al. John and Loewner Ellipsoids , 2011, Discret. Comput. Geom..
[19] J. Faraut,et al. Analysis on Symmetric Cones , 1995 .
[20] Jean-Louis Goffin,et al. The Relaxation Method for Solving Systems of Linear Inequalities , 1980, Math. Oper. Res..
[21] H. Wolkowicz,et al. Invariant ellipsoidal cones , 1991 .
[22] Osman Güler,et al. Symmetry of convex sets and its applications to the extremal ellipsoids of convex bodies , 2012, Optim. Methods Softw..
[23] Alfredo N. Iusem,et al. Axiomatization of the index of pointedness for closed convex cones , 2005 .
[24] M. Henk. L¨ owner-John Ellipsoids , 2012 .
[25] Alberto Seeger,et al. Deterministic and stochastic methods for computing volumetric moduli of convex cones , 2010 .
[26] Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones , 2004 .
[27] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[29] René Henrion,et al. On Properties of Different Notions of Centers for Convex Cones , 2010 .
[30] Silvio Levy,et al. Flavors of Geometry , 1997 .
[31] Giuseppe Carlo Calafiore,et al. Approximation of n-dimensional data using spherical and ellipsoidal primitives , 2002, IEEE Trans. Syst. Man Cybern. Part A.
[32] J. Danskin. The Theory of Max-Min, with Applications , 1966 .