Conic version of Loewner–John ellipsoid theorem

We extend John’s inscribed ellipsoid theorem, as well as Loewner’s circumscribed ellipsoid theorem, from convex bodies to proper cones. To be more precise, we prove that a proper cone $$K$$K in $$\mathbb {R}^n$$Rn contains a unique ellipsoidal cone $$Q^\mathrm{in}(K)$$Qin(K) of maximal canonical volume and, on the other hand, it is enclosed by a unique ellipsoidal cone $$Q^\mathrm{circ}(K)$$Qcirc(K) of minimal canonical volume. In addition, we explain how to construct the inscribed ellipsoidal cone $$Q^\mathrm{in}(K)$$Qin(K). The circumscribed ellipsoidal cone $$Q^\mathrm{circ}(K)$$Qcirc(K) is then obtained by duality arguments. The canonical volume of an ellipsoidal cone is defined as the usual $$n$$n-dimensional volume of a certain truncation of the cone.

[1]  H. Wolkowicz,et al.  Exponential nonnegativity on the ice cream cone , 1991 .

[2]  Alberto Seeger,et al.  Centers and partial volumes of convex cones I. Basic theory , 2015 .

[3]  Jean B. Lasserre,et al.  A generalization of Löwner-John’s ellipsoid theorem , 2013, Mathematical Programming.

[4]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[5]  Matthias J. Weber,et al.  Davis' Convexity Theorem and Extremal Ellipsoids , 2009, 0907.1158.

[6]  Roger J.-B. Wets,et al.  Continuity of some convex-cone-valued mappings , 1967 .

[8]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[9]  Sebastian Sitarz The medal points' incenter for rankings in sport , 2013, Appl. Math. Lett..

[10]  A. Seeger,et al.  Solidity indices for convex cones , 2012 .

[11]  Katta G. Murty,et al.  CP-rays in simplicial cones , 1990, Math. Program..

[12]  Osman Güler,et al.  Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..

[14]  R. Correa,et al.  Directional derivative of a minimax function , 1985 .

[15]  A. Berman,et al.  Nonnegative matrices in dynamic systems , 1979 .

[16]  René Henrion,et al.  Inradius and Circumradius of Various Convex Cones Arising in Applications , 2010 .

[17]  M. Henk Löwner – John Ellipsoids , 2012 .

[18]  Peter M. Gruber,et al.  John and Loewner Ellipsoids , 2011, Discret. Comput. Geom..

[19]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[20]  Jean-Louis Goffin,et al.  The Relaxation Method for Solving Systems of Linear Inequalities , 1980, Math. Oper. Res..

[21]  H. Wolkowicz,et al.  Invariant ellipsoidal cones , 1991 .

[22]  Osman Güler,et al.  Symmetry of convex sets and its applications to the extremal ellipsoids of convex bodies , 2012, Optim. Methods Softw..

[23]  Alfredo N. Iusem,et al.  Axiomatization of the index of pointedness for closed convex cones , 2005 .

[24]  M. Henk L¨ owner-John Ellipsoids , 2012 .

[25]  Alberto Seeger,et al.  Deterministic and stochastic methods for computing volumetric moduli of convex cones , 2010 .

[26]  Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones , 2004 .

[27]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[29]  René Henrion,et al.  On Properties of Different Notions of Centers for Convex Cones , 2010 .

[30]  Silvio Levy,et al.  Flavors of Geometry , 1997 .

[31]  Giuseppe Carlo Calafiore,et al.  Approximation of n-dimensional data using spherical and ellipsoidal primitives , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[32]  J. Danskin The Theory of Max-Min, with Applications , 1966 .