Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control

We present certainty equivalence output feedback results for discrete-time nonlinear systems that employ possibly discontinuous control laws in the feedback loop. Coupling assumptions of nominal robustness with uniform observability or detectability assumptions, we assert nominally robust stability for output feedback closed loops. We further show that model predictive control (MPC) can be used to generate a feedback control law that is robustly globally asymptotically stabilizing when used in a certainty equivalence output feedback closed loop. Allowing for discontinuous feedback control laws is important for systems employing MPC, since the method can, and sometimes necessarily does, result in discontinuous control laws.

[1]  Martin Guay,et al.  Nonlinear output feedback receding horizon control of sampled data systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[2]  J. Grizzle,et al.  Newton, observers and nonlinear discrete-time control , 1990, 29th IEEE Conference on Decision and Control.

[3]  Hyungbo Shim,et al.  Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback , 2003, Autom..

[4]  S. Glad Observability and nonlinear dead beat observers , 1983, The 22nd IEEE Conference on Decision and Control.

[5]  Andrew R. Teel,et al.  Results on discrete-time control-Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[6]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[7]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[8]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[9]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[10]  S. E. Tuna,et al.  Model predictive control when a local control Lyapunov function is not available , 2003, Proceedings of the 2003 American Control Conference, 2003..

[11]  J. P. Gauteier G. BORNlrRD OBSERVABILITY FOR ANY u(t) OF A CLASS OF NONLINEAR SYSTEMS , 1980 .

[12]  M. A. Henson,et al.  Receding horizon control and discontinuous state feedback stabilization , 1995 .

[13]  F. Allgöwer,et al.  Output feedback stabilization of constrained systems with nonlinear predictive control , 2003 .

[14]  Eduardo Sontag Further facts about input to state stabilization , 1990 .

[15]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[16]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[17]  G. Nicolao,et al.  Output Feedback Receding-Horizon Control of Discrete-Time Nonlinear Systems , 1998 .

[18]  Eduardo D. Sontag,et al.  Conditions for Abstract Nonlinear Regulation , 1981, Inf. Control..

[19]  E. Gilbert,et al.  An existence theorem for discrete-time infinite-horizon optimal control problems , 1985 .

[20]  Darren M. Dawson,et al.  Proceedings of the American Control Conference , 2001 .

[21]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[22]  Eduardo D. Sontag,et al.  A concept of local observability , 1984 .

[23]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[24]  H. Nijmeijer Observability of autonomous discrete-time nonlinear systems: a geometric approach : Preprint , 1982 .

[25]  J. Tsinias,et al.  The input-to-state stability condition and global stabilization of discrete-time systems , 1994, IEEE Trans. Autom. Control..

[26]  J. Gauthier,et al.  Observability for any of a class of nonlinear systems , 1981 .

[27]  J. Tsinias,et al.  Stabilization of nonlinear discrete-time systems using state detection , 1993, IEEE Trans. Autom. Control..

[28]  Andrew R. Teel,et al.  Discrete-time asymptotic controllability implies smooth control-Lyapunov function , 2004, Syst. Control. Lett..

[29]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[30]  John Tsinias,et al.  A generalization of Vidyasagar's theorem on stability using state detection , 1991 .

[31]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[32]  Dragan Nesic,et al.  A unified framework for input-to-state stability in systems with two time scales , 2003, IEEE Trans. Autom. Control..

[33]  James B. Rawlings,et al.  Discrete-time stability with perturbations: application to model predictive control , 1997, Autom..

[34]  D. Angeli Intrinsic robustness of global asymptotic stability , 1999 .

[35]  Andrew R. Teel,et al.  Nominally Robust Model Predictive Control With State Constraints , 2007, IEEE Transactions on Automatic Control.

[36]  D. Mayne,et al.  MOVING HORIZON OBSERVERS , 1992 .

[37]  Manfred Morari,et al.  Contractive model predictive control for constrained nonlinear systems , 2000, IEEE Trans. Autom. Control..