Constructing confidence intervals for a quantile using batching and sectioning when applying Latin hypercube sampling
暂无分享,去创建一个
[1] Barry L. Nelson,et al. Control variates for quantile estimation , 1987, WSC '87.
[2] Marvin K. Nakayama. Using sectioning to construct confidence intervals for quantiles when applying importance sampling , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).
[3] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[4] Jon C. Helton,et al. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems , 2002 .
[5] Eve Bofingeb,et al. ESTIMATION OF A DENSITY FUNCTION USING ORDER STATISTICS1 , 1975 .
[6] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[7] Marvin K. Nakayama,et al. Confidence intervals for quantiles when applying variance-reduction techniques , 2012, TOMC.
[8] P. Glasserman,et al. Variance Reduction Techniques for Estimating Value-at-Risk , 2000 .
[9] Marvin K. Nakayama,et al. Confidence Intervals for Quantiles Using Sectioning When Applying Variance-Reduction Techniques , 2014, TOMC.
[10] Jingcheng Liu,et al. The Convergence Rate and Asymptotic Distribution of the Bootstrap Quantile Variance Estimator for Importance Sampling , 2012, Advances in Applied Probability.
[11] P. Glynn. IMPORTANCE SAMPLING FOR MONTE CARLO ESTIMATION OF QUANTILES , 2011 .
[12] P. Hall,et al. On the Distribution of a Studentized Quantile , 1988 .
[13] B. Nelson,et al. Control Variates for Probability and Quantile Estimation , 1998 .
[14] K NakayamaMarvin,et al. Confidence intervals for quantiles when applying variance-reduction techniques , 2012 .
[15] A. Owen. A Central Limit Theorem for Latin Hypercube Sampling , 1992 .
[16] Joseph L. Gastwirth,et al. On a Simple Estimate of the Reciprocal of the Density Function , 1968 .
[17] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[18] R. R. Bahadur. A Note on Quantiles in Large Samples , 1966 .
[19] Marvin K. Nakayama. Asymptotically Valid Confidence Intervals for Quantiles and Values-at-Risk When Applying Latin Hypercube Sampling , 2011 .
[20] James R. Wilson,et al. Correlation-induction techniques for estimating quantiles in simulation experiments , 1995, WSC '95.
[21] Peter W. Glynn,et al. Stochastic Simulation: Algorithms and Analysis , 2007 .
[22] Ronald L. Iman. Latin Hypercube Sampling , 2008 .
[23] Michael C. Fu,et al. Probabilistic Error Bounds for Simulation Quantile Estimators , 2003, Manag. Sci..
[24] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[25] J. Ghosh. A New Proof of the Bahadur Representation of Quantiles and an Application , 1971 .