Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region

Abstract This paper presents a Gaussian Quadrature method for the evaluation of the triple integral ∫ ∫ T ∫ f ( x , y , z ) d x d y d z , where f ( x , y , z ) is an analytic function in x, y, z and T refers to the standard tetrahedral region: { ( x , y , z ) 0 ⩽ x , y , z ⩽ 1 , x + y + z ⩽ 1 } in three space ( x , y , z ) . Mathematical transformation from ( x , y , z ) space to ( U , V , W ) space map the standard tetrahedron T in ( x , y , z ) space to a standard 1-cube: { ( U , V , W ) / 0 ⩽ U , V , W ⩽ 1 } in ( U , V , W ) space. Then we use the product of Gauss Legendre and Gauss Jacobi weight coefficients and abscissas to arrive at an efficient quadrature rule over the standard tetrahedral region T. We have then demonstrated the application of the derived quadrature rules by considering the evaluation of some typical triple integrals over the region T.

[1]  F. Lether Computation of double integrals over a triangle , 1976 .

[2]  D. J. Shippy,et al.  Alternative integration formulae for triangular finite elements , 1981 .

[3]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[4]  Pierre Hillion,et al.  Numerical integration on a triangle , 1977 .

[5]  H.T. Rathod,et al.  Integration of polynomials over an arbitrary tetrahedron in Euclidean three-dimensional space , 1996 .

[6]  H. T. Rathod,et al.  Gauss legendre quadrature formulas over a tetrahedron , 2006 .

[7]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[8]  Roman Baldur,et al.  Extended numerical integration method for triangular surfaces , 1977 .

[9]  A. Stroud,et al.  Numerical integration over simplexes , 1956 .

[10]  H. T. Rathod,et al.  Integration of trivariate polynomials over linear polyhedra in Euclidean three-dimensional space , 1998, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[11]  Amesh,et al.  Gauss Legendre quadrature over a triangle , 2004 .

[12]  Franz G. Lannoy Triangular finite elements and numerical integration , 1977 .

[13]  C. T. Reddy Improved three point integration schemes for triangular finite elements , 1978 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  G. Szegö Recent Advances and Open Questions on the Asymptotic Expansions of Orthogonal Polynomials , 1959 .

[16]  M. Gellert,et al.  Some criteria for numerically integrated matrices and quadrature formulas for triangles , 1978 .

[17]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[18]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[19]  Seymour Haber,et al.  Numerical Evaluation of Multiple Integrals , 1970 .

[20]  A. Stroud,et al.  Numerical evaluation of multiple integrals. II , 1957 .

[21]  K. Bathe Finite Element Procedures , 1995 .

[22]  G. R. Cowper,et al.  Gaussian quadrature formulas for triangles , 1973 .