HR-Cosmos: Kinematics of Star-Forming Galaxies at z $\sim$ 0.9

We present the kinematic analysis of a sub-sample of 82 galaxies at $\mathrm{0.75<z<1.2}$ from our new survey HR-COSMOS aimed to obtain the first statistical study on the kinematics of star-forming galaxies in the treasury COSMOS field at $\mathrm{0<z<1.2}$. We observed $\sim\,$766 emission line galaxies using the multi-slit spectrograph ESO-VLT/VIMOS in high-resolution mode (R=2500). To better extract galaxy kinematics, VIMOS spectral slits have been carefully tilted along the major axis orientation of the galaxies, making use of the position angle measurements from the high spatial resolution ACS/HST COSMOS images. We constrained the kinematics of the sub-sample at $0.75<z<1.2$ by creating high resolution semi-analytical models. We established the stellar-mass Tully-Fisher relation at $z\simeq 0.9$ with high-quality stellar mass measurements derived using the latest COSMOS photometric catalog, which includes the latest data releases of UltraVISTA and Spitzer. In doubling the sample at these redshifts compared with the literature, we estimated the relation without setting its slope, and found it consistent with previous studies in other deep extragalactic fields assuming no significant evolution of the relation with redshift at $z\lesssim1$. We computed dynamical masses within the radius R$_{2.2}$ and found a median stellar-to-dynamical mass fraction equal to 0.2 (assuming Chabrier IMF), which implies a contribution of gas and dark matter masses of 80% of the total mass within R$_{2.2}$, in agreement with recent integral field spectroscopy surveys. We find no dependence of the stellar-mass Tully-Fisher relation with environment probing up to group scale masses. This study shows that multi-slit galaxy surveys remain a powerful tool to derive kinematics for large numbers of galaxies at both high and low redshift.

[1]  A. M. Swinbank,et al.  The KMOS Redshift One Spectroscopic Survey (KROSS):the Tully-Fisher Relation at z ~ 1 , 2016, 1604.06103.

[2]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[3]  R. Genzel,et al.  KMOS3D: DYNAMICAL CONSTRAINTS ON THE MASS BUDGET IN EARLY STAR-FORMING DISKS , 2016, 1603.03432.

[4]  F. Fraternali,et al.  Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ~ 1 , 2016, 1602.04942.

[5]  A. M. Swinbank,et al.  The KMOS Redshift One Spectroscopic Survey (KROSS):dynamical properties, gas and dark matter fractions of typical z~1 star-forming galaxies , 2016, 1601.03400.

[6]  E. Emsellem,et al.  Deep MUSE observations in the HDFS - Morpho-kinematics of distant star-forming galaxies down to 108M⊙ , 2015, 1512.00246.

[7]  Benjamin J. Weiner,et al.  A transition mass in the local Tully–Fisher relation , 2015, 1506.04144.

[8]  B. Mobasher,et al.  A COMPARATIVE STUDY OF DENSITY FIELD ESTIMATION FOR GALAXIES: NEW INSIGHTS INTO THE EVOLUTION OF GALAXIES WITH ENVIRONMENT IN COSMOS OUT TO z ∼ 3 , 2015, 1503.07879.

[9]  L. Kewley,et al.  A TURNOVER IN THE GALAXY MAIN SEQUENCE OF STAR FORMATION AT M* ∼ 1010 M☉ FOR REDSHIFTS z < 1.3 , 2015, 1501.01080.

[10]  P. Weilbacher,et al.  The MUSE 3D view of the Hubble Deep Field South , 2014, 1411.7667.

[11]  O. Fèvre,et al.  Evolution of the specific star formation rate function at z< 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS , 2014, 1410.4875.

[12]  I. Smail,et al.  COSMIC WEB AND STAR FORMATION ACTIVITY IN GALAXIES AT z ∼ 1 , 2014, 1409.7695.

[13]  M. Fabricius,et al.  THE KMOS3D SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ⩽ z ⩽ 2.7 , 2014, 1409.6791.

[14]  O. Fèvre,et al.  STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH) , 2014, 1407.7030.

[15]  H. Plana,et al.  The Hα kinematics of interacting galaxies in 12 compact groups , 2014, 1406.0828.

[16]  O. Fèvre,et al.  Hidden starbursts and active galactic nuclei at 0< z <4 from the Herschel-VVDS-CFHTLS-D1 field: Inferences on coevolution and feedback , 2013, 1311.5228.

[17]  B. Lundgren,et al.  A CANDELS–3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < z < 1.5 , 2013, 1310.5702.

[18]  Bruno Milliard,et al.  Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies , 2013, 1309.0008.

[19]  O. University,et al.  The ESO UVES advanced data products quasar sample: II. Cosmological evolution of the neutral gas mass density , 2013, 1307.0602.

[20]  Karl Glazebrook,et al.  The Dawes Review 1: Kinematic Studies of Star-Forming Galaxies Across Cosmic Time , 2013, Publications of the Astronomical Society of Australia.

[21]  C. Wolf,et al.  Tully-Fisher analysis of the multiple cluster system Abell 901/902 , 2013, 1304.6186.

[22]  H. Plana,et al.  The Tully–Fisher relations for Hickson compact group galaxies , 2013, 1304.4493.

[23]  Qi Guo,et al.  EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1–3 IN COSMOS , 2013, 1303.6689.

[24]  Michael Wegner,et al.  First Light for the KMOS Multi-Object Integral-Field Spectrometer , 2013 .

[25]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[26]  Andreas Burkert,et al.  THE SINS/zC-SINF SURVEY OF z ∼ 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES , 2012, 1211.6160.

[27]  B. Weiner,et al.  THE EPOCH OF DISK SETTLING: z ∼ 1 TO NOW , 2012, 1207.7072.

[28]  B. Garilli,et al.  THE zCOSMOS 20k GROUP CATALOG , 2012, 1207.0002.

[29]  K. Glazebrook,et al.  The Tully-Fisher Relation for 25,000 SDSS Galaxies as Function of Environment , 2012, 1206.1662.

[30]  P. Hopkins,et al.  GALAXY DISKS DO NOT NEED TO SURVIVE IN THE ΛCDM PARADIGM: THE GALAXY MERGER RATE OUT TO z ∼ 1.5 FROM MORPHO-KINEMATIC DATA , 2012, 1206.0008.

[31]  L. Cortese,et al.  Are passive red spirals truly passive? - The current star formation activity of optically-red disc galaxies , 2012, 1205.6819.

[32]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[33]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[34]  J. Newman,et al.  SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES , 2012, 1203.2611.

[35]  K. Coppin,et al.  THE HERSCHEL FILAMENT: A SIGNATURE OF THE ENVIRONMENTAL DRIVERS OF GALAXY EVOLUTION DURING THE ASSEMBLY OF MASSIVE CLUSTERS AT z = 0.9 , 2012, 1203.0007.

[36]  B. Garilli,et al.  MASSIV: Mass Assemby Survey with SINFONI in VVDS. I. Survey description and global properties of the 0.9 < z < 1.8 galaxy sample , 2011, 1111.3631.

[37]  J. Kneib,et al.  GALAXIES IN X-RAY GROUPS. I. ROBUST MEMBERSHIP ASSIGNMENT AND THE IMPACT OF GROUP ENVIRONMENTS ON QUENCHING , 2011, 1109.6040.

[38]  S. Bamford,et al.  The effect of the environment on the gas kinematics and the structure of distant galaxies , 2011, 1107.0963.

[39]  J. Gunn,et al.  Calibrated Tully–Fisher relations for improved estimates of disc rotation velocities , 2011, 1106.1650.

[40]  M. Sullivan,et al.  THE ASSEMBLY HISTORY OF DISK GALAXIES. I. THE TULLY–FISHER RELATION TO z ≃ 1.3 FROM DEEP EXPOSURES WITH DEIMOS , 2011, 1102.3911.

[41]  Michael J. Williams,et al.  The Tully-Fisher relations of early-type spiral and S0 galaxies , 2010, 1007.4072.

[42]  I. Smail,et al.  The dependence of star formation activity on environment and stellar mass at z∼ 1 from the HiZELS-Hα survey , 2010, 1007.2642.

[43]  B. Garilli,et al.  THE XMM-NEWTON WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI , 2010, 1004.2790.

[44]  C. Balkowski,et al.  Kinematics of galaxies in compact groups - Studying the B-band Tully-Fischer relation , 2010, 1003.0345.

[45]  C. Lintott,et al.  Galaxy Zoo: Passive Red Spirals . , 2009, 0910.4113.

[46]  J. Moustakas,et al.  A SPECTROSCOPICALLY CONFIRMED EXCESS OF 24 μm SOURCES IN A SUPER GALAXY GROUP AT z = 0.37: ENHANCED DUSTY STAR FORMATION RELATIVE TO THE CLUSTER AND FIELD ENVIRONMENT , 2009, 0909.4079.

[47]  C. Balkowski,et al.  Evidence for strong dynamical evolution in disc galaxies through the last 11 Gyr. GHASP VIII – a local reference sample of rotating disc galaxies for high‐redshift studies , 2009, 0904.3891.

[48]  M. Rodrigues,et al.  The Hubble sequence: just a vestige of merger events? , 2009, 0903.3962.

[49]  F. Hammer,et al.  The baryonic content and Tully-Fisher relation at z~0.6 , 2009, 0903.3961.

[50]  B. Garilli,et al.  Integral field spectroscopy with SINFONI of VVDS galaxies I. Galaxy dynamics and mass assembly at 1.2 < z < 1.6 , 2009, 0903.1211.

[51]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[52]  Alexander S. Szalay,et al.  Galaxy Zoo: the dependence of morphology and colour on environment , 2008, 0805.2612.

[53]  J. Gach,et al.  GHASP: an Hα kinematic survey of spiral and irregular galaxies - VI. New Hα data cubes for 108 galaxies , 2008, 0805.0976.

[54]  S. C. Porter,et al.  Star formation in galaxies falling into clusters along supercluster-scale filaments , 2008, 0804.4177.

[55]  A. Kembhavi,et al.  IMAGES - III. The evolution of the near-infrared Tully-Fisher relation over the last 6 Gyr , 2008, 0803.3002.

[56]  S. Courteau,et al.  Scaling Relations of Spiral Galaxies , 2007, 0708.0422.

[57]  K. Sheth,et al.  The Effects of Environment on Morphological Evolution at 0 < z < 1.2 in the COSMOS Survey , 2007, astro-ph/0703668.

[58]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[59]  Miguel Ángel Martínez,et al.  Variable Very High Energy γ-Ray Emission from Markarian 501 , 2007, astro-ph/0702008.

[60]  R. Ellis,et al.  Dynamical Evidence for Environmental Evolution of Intermediate-Redshift Spiral Galaxies , 2007, astro-ph/0701156.

[61]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[62]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[63]  B. Weiner,et al.  The Stellar Mass Tully-Fisher Relation to z = 1.2 from AEGIS , 2006, astro-ph/0702643.

[64]  D. Thompson,et al.  COSMOS Morphological Classification with the Zurich Estimator of Structural Types (ZEST) and the Evolution Since z = 1 of the Luminosity Function of Early, Disk, and Irregular Galaxies , 2006, astro-ph/0611644.

[65]  D. Thompson,et al.  The Evolution of the Number Density of Large Disk Galaxies in COSMOS , 2006, astro-ph/0609042.

[66]  J. Brinkmann,et al.  The Tully-Fisher Relation and its Residuals for a Broadly Selected Sample of Galaxies , 2006, astro-ph/0608472.

[67]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[68]  J. Newman,et al.  The DEEP2 galaxy redshift survey: evolution of the colour–density relation at 0.4 < z < 1.35 , 2006, astro-ph/0607512.

[69]  J. Sommer-Larsen,et al.  The Tully-Fisher relation and its evolution with redshift in cosmological simulations of disc galaxy formation , 2006, astro-ph/0606531.

[70]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[71]  S. Bamford,et al.  The Tully-Fisher relation of intermediate redshift field and cluster galaxies from Subaru spectroscopy , 2005, astro-ph/0511831.

[72]  J. Binney,et al.  A dynamical model for the extraplanar gas in spiral galaxies , 2005, astro-ph/0511334.

[73]  B. Garilli,et al.  The Very Large Telescope Visible Multi‐Object Spectrograph Mask Preparation Software , 2005 .

[74]  S. McGaugh The Baryonic Tully-Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies , 2005, astro-ph/0506750.

[75]  J. Brinkmann,et al.  Dark Matter and Stellar Mass in the Luminous Regions of Disk Galaxies , 2005, astro-ph/0504581.

[76]  Canada.,et al.  The Tully—Fisher relation of distant cluster galaxies , 2005, astro-ph/0503648.

[77]  R. Ellis,et al.  Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship between the Stellar and Total Masses of Disk Galaxies since z ~ 1 , 2005, astro-ph/0503597.

[78]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[79]  A. Mazure,et al.  The VVDS Data‐Reduction Pipeline: Introducing VIPGI, the VIMOS Interactive Pipeline and Graphical Interface , 2004, astro-ph/0409248.

[80]  P. Madau,et al.  A New Nonparametric Approach to Galaxy Morphological Classification , 2003, astro-ph/0311352.

[81]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[82]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[83]  Scott C. Chapman,et al.  Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies , 2003, astro-ph/0308198.

[84]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[85]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[86]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[87]  W. Kapferer,et al.  Internal Kinematics of Spiral Galaxies in Distant Clusters , 2003, 1007.3293.

[88]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[89]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[90]  University of Toronto,et al.  A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.

[91]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[92]  J. Sommer-Larsen,et al.  CDM, Feedback and the Hubble Sequence , 2002, astro-ph/0206462.

[93]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[94]  J. Sommer-Larsen,et al.  Galaxy Formation: Cold Dark Matter, Feedback, and the Hubble Sequence , 2002, astro-ph/0204366.

[95]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[96]  D. Fabricant,et al.  Physical Sources of Scatter in the Tully-Fisher Relation , 2002, astro-ph/0202111.

[97]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[98]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[99]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[100]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[101]  D. Spergel,et al.  The Formation of Disk Galaxies , 1996, astro-ph/9611226.

[102]  B. Santiago,et al.  The morphological identification of the rapidly evolving population of faint galaxies , 1995, astro-ph/9503101.

[103]  J. Willick Statistical bias in distance and peculiar velocity estimation. 1: The 'calibration' problem , 1994 .

[104]  W. Sullivan,et al.  Do rotation curves of spiral galaxies in clusters decline , 1992 .

[105]  R. Giovanelli,et al.  Neutral hydrogen in isolated galaxies. IV - Results for the Arecibo sample , 1984 .

[106]  L. Lucy,et al.  THE DISTRIBUTION OF MOLECULAR CLOUDS IN THE NUCLEAR REGION OF NGC-1068 , 1983 .

[107]  P. Hickson Systematic properties of compact groups of galaxies. , 1982 .

[108]  N. Vogt,et al.  A Survey of Galaxy Kinematics to Z ∼ 1 in the Tkrs/goods-n Field. Ii. Evolution in the Tully-fisher Relation , 2006 .

[109]  N. Vogt,et al.  A Survey of Galaxy Kinematics to Z ∼ 1 in the Tkrs/goods-n Field. I. Rotation and Dispersion Properties , 2006 .

[110]  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE URSA MAJOR CLUSTER OF GALAXIES. V; HI ROTATION CURVE SHAPES AND THE TULLY-FISHER RELATIONS. , 2001 .

[111]  Accepted for publication in the Astronomical Journal Optical Rotation Curves and Linewidths for Tully-Fisher Applications 1 , 1997 .

[112]  Submitted to The Astronomical Journal , 1995 .

[113]  Paul Hickson,et al.  Atlas of Compact Groups of Galaxies (Special Issue) , 1993 .

[114]  Ebeling,et al.  Detecting structure in two dimensions combining Voronoi tessellation and percolation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[115]  P. Roelfsema,et al.  Astronomical Data Analysis Software and Systems I , 1992 .

[116]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[117]  K. Freeman On the disks of spiral and SO Galaxies , 1970 .

[118]  E. Holmberg A photographic photometry of extragalactic nebulae , 1958 .

[119]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[120]  A. Biviano,et al.  To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 STARBURST GALAXIES IN CLUSTER-FEEDING FILAMENTS UNVEILED BY SPITZER , 2022 .