Exactly Sparse Delayed-State Filters

This paper presents the novel insight that the SLAM information matrix is exactly sparse in a delayed-state framework. Such a framework is used in view-based representations of the environment which rely upon scan-matching raw sensor data. Scan-matching raw data results in virtual observations of robot motion with respect to a place its previously been. The exact sparseness of the delayed-state information matrix is in contrast to other recent feature based SLAM information algorithms like Sparse Extended Information Filters or Thin Junction Tree Filters. These methods have to make approximations in order to force the feature-based SLAM information matrix to be sparse. The benefit of the exact sparseness of the delayed-state framework is that it allows one to take advantage of the information space parameterization without having to make any approximations. Therefore, it can produce equivalent results to the “full-covariance” solution.

[1]  H. Bigelow Woods Hole Oceanographic Institution , 1930, Nature.

[2]  Robert C. Spindel,et al.  An acoustic navigation system , 1974 .

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  Peter Cheeseman,et al.  A stochastic map for uncertain spatial relationships , 1988 .

[5]  Raja Chatila,et al.  An Experimental System for Incremental Environment Modelling by an Autonomous Mobile Robot , 1989, ISER.

[6]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[7]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[8]  R. Gordon Principles of Operation A Practical Primer , 1996 .

[9]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[10]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[11]  Hanumant Singh,et al.  Advances in Doppler-based navigation of underwater robotic vehicles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[12]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[13]  Hanumant Singh,et al.  Imaging Underwater for Archaeology , 2000 .

[14]  Philip F. McLauchlan,et al.  A batch/recursive algorithm for 3D scene reconstruction , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  John J. Leonard,et al.  Incorporation of Delayed Decision Making into Stochastic Mapping , 2000, ISER.

[16]  Udo Frese,et al.  Simultaneous Localization and Mapping - A Discussion , 2001 .

[17]  J. Reynolds,et al.  Fisheries and fisheries habitat investigations using undersea technology , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[18]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[19]  J. Leonard,et al.  Decoupled Stochastic Mapping , 2001 .

[20]  John J. Leonard,et al.  Decoupled stochastic mapping [for mobile robot & AUV navigation] , 2001 .

[21]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[22]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[23]  Hanumant Singh,et al.  Relative Pose Estimation for Instrumented, Calibrated Imaging Platforms , 2003, DICTA.

[24]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[25]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[26]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[27]  Hanumant Singh,et al.  Visually augmented navigation in an unstructured environment using a delayed state history , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[28]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[29]  Kurt Konolige,et al.  Large-Scale Map-Making , 2004, AAAI.

[30]  C. Roman,et al.  Imaging Coral I: Imaging Coral Habitats with the SeaBED AUV , 2004 .

[31]  Udo Frese,et al.  A Discussion of Simultaneous Localization and Mapping , 2006, Auton. Robots.