Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.

Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations.

[1]  A. Callan-Jones,et al.  Lipid Cosorting Mediated by Shiga Toxin Induced Tubulation , 2010, Traffic.

[2]  A. Tian,et al.  Quantifying Membrane Curvature Generation of Drosophila Amphiphysin N-BAR Domains. , 2010, The journal of physical chemistry letters.

[3]  E. Rhoades,et al.  Effects of curvature and composition on α-synuclein binding to lipid vesicles. , 2010, Biophysical journal.

[4]  R. Parthasarathy,et al.  The vesicle trafficking protein Sar1 lowers lipid membrane rigidity. , 2010, Biophysical journal.

[5]  T. Graham,et al.  Interplay of proteins and lipids in generating membrane curvature. , 2010, Current opinion in cell biology.

[6]  Simon C Watkins,et al.  Sar1 assembly regulates membrane constriction and ER export , 2010, The Journal of cell biology.

[7]  S. Keeney,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S5 Tables S1 and S2 References Movie S1 Fcho Proteins Are Nucleators of Clathrin-mediated Endocytosis , 2022 .

[8]  R. Lundmark,et al.  Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis. , 2010, Seminars in cell & developmental biology.

[9]  N. Mochizuki,et al.  Structural characteristics of BAR domain superfamily to sculpt the membrane. , 2010, Seminars in cell & developmental biology.

[10]  G. Voth,et al.  Multiscale simulation of protein mediated membrane remodeling. , 2010, Seminars in cell & developmental biology.

[11]  S. Suetsugu,et al.  Subcellular membrane curvature mediated by the BAR domain superfamily proteins. , 2010, Seminars in cell & developmental biology.

[12]  Veronika Kralj-Iglic,et al.  Mechanical stability of membrane nanotubular protrusions influenced by attachment of flexible rod-like proteins. , 2010, Journal of biomechanics.

[13]  A. Steven,et al.  Multiple Modes of Endophilin-mediated Conversion of Lipid Vesicles into Coated Tubes , 2010, The Journal of Biological Chemistry.

[14]  G. Drin,et al.  Amphipathic helices and membrane curvature , 2010, FEBS letters.

[15]  U. Gether,et al.  BAR domains, amphipathic helices and membrane‐anchored proteins use the same mechanism to sense membrane curvature , 2010, FEBS letters.

[16]  M. Kozlov,et al.  Modeling membrane shaping by proteins: Focus on EHD2 and N‐BAR domains , 2010, FEBS letters.

[17]  K. Ramamurthi,et al.  Macromolecules that prefer their membranes curvy , 2010, Molecular microbiology.

[18]  P. Bassereau Division of labour in ESCRT complexes , 2010, Nature Cell Biology.

[19]  I. Haworth,et al.  Roles of Amphipathic Helices and the Bin/Amphiphysin/Rvs (BAR) Domain of Endophilin in Membrane Curvature Generation* , 2010, The Journal of Biological Chemistry.

[20]  A. Vahedi-Faridi,et al.  Molecular basis for SH3 domain regulation of F-BAR–mediated membrane deformation , 2010, Proceedings of the National Academy of Sciences.

[21]  D. Sasaki,et al.  Steric confinement of proteins on lipid membranes can drive curvature and tubulation , 2010, Proceedings of the National Academy of Sciences.

[22]  A. Tian,et al.  Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary , 2010, Proceedings of the National Academy of Sciences.

[23]  K. Simons,et al.  Structural basis of wedging the Golgi membrane by FAPP pleckstrin homology domains , 2010, EMBO reports.

[24]  J. Hurley,et al.  Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes , 2010, Nature.

[25]  P. Bassereau,et al.  Membrane curvature controls dynamin polymerization , 2010, Proceedings of the National Academy of Sciences.

[26]  T. Baumgart,et al.  Curvature sensing by the epsin N-terminal homology domain measured on cylindrical lipid membrane tethers. , 2010, Journal of the American Chemical Society.

[27]  V. Zhdanov,et al.  Protein adsorption and desorption on lipid bilayers. , 2010, Biophysical chemistry.

[28]  P. Bassereau,et al.  ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions , 2010, The EMBO journal.

[29]  T. Baumgart,et al.  Curvature Sensing by the Epsin N-terminal Homology (ENTH) Domain Measured on Cylindrical Lipid Membrane Tethers , 2010 .

[30]  M. Grzybek,et al.  Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature , 2009, Proceedings of the National Academy of Sciences.

[31]  K. Simons,et al.  Golgi protein FAPP2 tubulates membranes , 2009, Proceedings of the National Academy of Sciences.

[32]  Gregory A Voth,et al.  Membrane binding by the endophilin N-BAR domain. , 2009, Biophysical journal.

[33]  S. Schmid,et al.  Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. , 2009, Molecular biology of the cell.

[34]  Klaus Schulten,et al.  Membrane-bending mechanism of amphiphysin N-BAR domains. , 2009, Biophysical journal.

[35]  U. Gether,et al.  Amphipathic motifs in BAR domains are essential for membrane curvature sensing , 2009, The EMBO journal.

[36]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[37]  N. Bhardwaj,et al.  Molecular Basis of the Potent Membrane-remodeling Activity of the Epsin 1 N-terminal Homology Domain* , 2009, The Journal of Biological Chemistry.

[38]  Yoko Shibata,et al.  Mechanisms shaping the membranes of cellular organelles. , 2009, Annual review of cell and developmental biology.

[39]  W. Prinz,et al.  Membrane-bending proteins , 2009, Critical reviews in biochemistry and molecular biology.

[40]  A. Tian,et al.  Bending stiffness depends on curvature of ternary lipid mixture tubular membranes. , 2009, Biophysical journal.

[41]  George Khelashvili,et al.  Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption. , 2009, Biophysical journal.

[42]  J. Zimmerberg,et al.  Domain-Driven Morphogenesis of Cellular Membranes , 2009, Current Biology.

[43]  F. Polleux,et al.  The F-BAR Domain of srGAP2 Induces Membrane Protrusions Required for Neuronal Migration and Morphogenesis , 2009, Cell.

[44]  Edwin R. Chapman,et al.  Synaptotagmin-Mediated Bending of the Target Membrane Is a Critical Step in Ca2+-Regulated Fusion , 2009, Cell.

[45]  Holger Sondermann,et al.  Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin , 2009, Proceedings of the National Academy of Sciences.

[46]  Klaus Schulten,et al.  Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. , 2009, Structure.

[47]  C. G. Hansen,et al.  SDPR induces membrane curvature and functions in the formation of caveolae , 2009, Nature Cell Biology.

[48]  P. Camilli,et al.  The BAR Domain Superfamily: Membrane-Molding Macromolecules , 2009, Cell.

[49]  A. Tian,et al.  Sorting of lipids and proteins in membrane curvature gradients. , 2009, Biophysical journal.

[50]  A. Callan-Jones,et al.  Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins , 2009, Proceedings of the National Academy of Sciences.

[51]  Jennifer Lippincott-Schwartz,et al.  Membrane scission by the ESCRT-III complex , 2009, Nature.

[52]  Howard A. Stone,et al.  Geometric Cue for Protein Localization in a Bacterium , 2009, Science.

[53]  C. Dobson,et al.  Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy , 2009 .

[54]  P. Aspenström Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. , 2009, International review of cell and molecular biology.

[55]  S. Veatch,et al.  An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. , 2009, Biochimica et biophysica acta.

[56]  S. Schmid,et al.  GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission , 2008, Cell.

[57]  S. Schmid,et al.  Real-Time Visualization of Dynamin-Catalyzed Membrane Fission and Vesicle Release , 2008, Cell.

[58]  Ralf Langen,et al.  Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement , 2008, Proceedings of the National Academy of Sciences.

[59]  R. Pastor,et al.  Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers. , 2008, Biophysical journal.

[60]  B. Collins The Structure and Function of the Retromer Protein Complex , 2008, Traffic.

[61]  P. De Camilli,et al.  Arf1-GTP-induced Tubule Formation Suggests a Function of Arf Family Proteins in Curvature Acquisition at Sites of Vesicle Budding* , 2008, Journal of Biological Chemistry.

[62]  M. Kozlov,et al.  The hydrophobic insertion mechanism of membrane curvature generation by proteins. , 2008, Biophysical journal.

[63]  E. Hurt,et al.  Membrane curvature induced by Arf1-GTP is essential for vesicle formation , 2008, Proceedings of the National Academy of Sciences.

[64]  Sune M. Christensen,et al.  A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. , 2008, Biophysical journal.

[65]  B. Peter,et al.  Arf family GTP loading is activated by, and generates, positive membrane curvature , 2008, The Biochemical journal.

[66]  S. May,et al.  Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides. , 2008, The journal of physical chemistry. B.

[67]  Bruno Antonny,et al.  Asymmetric Tethering of Flat and Curved Lipid Membranes by a Golgin , 2008, Science.

[68]  Manuel Prieto,et al.  Role of helix 0 of the N-BAR domain in membrane curvature generation. , 2008, Biophysical journal.

[69]  Adam Frost,et al.  Structural Basis of Membrane Invagination by F-BAR Domains , 2008, Cell.

[70]  T. Rapoport,et al.  Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules , 2008, Science.

[71]  O. Daumke,et al.  Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling , 2007, Nature.

[72]  Rohit Mittal,et al.  Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. , 2007, Structure.

[73]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[74]  K. Kremer,et al.  Aggregation and vesiculation of membrane proteins by curvature-mediated interactions , 2007, Nature.

[75]  Sumio Sugano,et al.  Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis , 2007, Cell.

[76]  G. Drin,et al.  Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature. , 2007, Biochemistry.

[77]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[78]  R. Losick,et al.  Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis , 2006, Molecular microbiology.

[79]  A. Iglič,et al.  Influence of rigid inclusions on the bending elasticity of a lipid membrane. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  B. Antonny Membrane deformation by protein coats. , 2006, Current opinion in cell biology.

[81]  Soichi Takeda,et al.  Endophilin BAR domain drives membrane curvature by two newly identified structure‐based mechanisms , 2006, The EMBO journal.

[82]  Ralf Langen,et al.  Mechanism of endophilin N‐BAR domain‐mediated membrane curvature , 2006, The EMBO journal.

[83]  S. Stagg,et al.  Structure of the Sec13/31 COPII coat cage , 2006, Nature.

[84]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[85]  Bianca Habermann,et al.  Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. , 2005, Developmental cell.

[86]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[87]  Randy Schekman,et al.  Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle , 2005, Cell.

[88]  W. Webb,et al.  Membrane elasticity in giant vesicles with fluid phase coexistence. , 2005, Biophysical journal.

[89]  G. Drin,et al.  ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif , 2005, The EMBO journal.

[90]  P. Bassereau,et al.  Role of curvature and phase transition in lipid sorting and fission of membrane tubules , 2005, The EMBO journal.

[91]  Judith Klumperman,et al.  Sorting Nexin-1 Mediates Tubular Endosome-to-TGN Transport through Coincidence Sensing of High- Curvature Membranes and 3-Phosphoinositides , 2004, Current Biology.

[92]  Peijun Zhang,et al.  The stalk region of dynamin drives the constriction of dynamin tubes , 2004, Nature Structural &Molecular Biology.

[93]  Harvey T. McMahon,et al.  The dynamin superfamily: universal membrane tubulation and fission molecules? , 2004, Nature Reviews Molecular Cell Biology.

[94]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[95]  Jean-Marc Allain,et al.  Biphasic vesicle: instability induced by adsorptionof protein s , 2003, q-bio/0312028.

[96]  M. S. Turner,et al.  Theoretical model for the formation of caveolae and similar membrane invaginations. , 2003, Biophysical journal.

[97]  M. Kozlov,et al.  Lipids in biological membrane fusion , 1995, The Journal of Membrane Biology.

[98]  Bruno Antonny,et al.  Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature , 2003, Nature.

[99]  Khashayar Farsad,et al.  Mechanisms of membrane deformation. , 2003, Current opinion in cell biology.

[100]  Fei Long,et al.  Contrasting Membrane Interaction Mechanisms of AP180 N-terminal Homology (ANTH) and Epsin N-terminal Homology (ENTH) Domains* , 2003, Journal of Biological Chemistry.

[101]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[102]  Frank Jülicher,et al.  Formation and interaction of membrane tubes. , 2002, Physical review letters.

[103]  G. Huber,et al.  Fluid-membrane tethers: minimal surfaces and elastic boundary layers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  P. De Camilli,et al.  Generation of high curvature membranes mediated by direct endophilin bilayer interactions , 2001, The Journal of cell biology.

[105]  Peijun Zhang,et al.  Three-dimensional reconstruction of dynamin in the constricted state , 2001, Nature Cell Biology.

[106]  T. Kigawa,et al.  Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. , 2001, Science.

[107]  D. Vollhardt,et al.  Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. , 2000, Advances in colloid and interface science.

[108]  R. Maget-Dana The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. , 1999, Biochimica et biophysica acta.

[109]  Pietro De Camilli,et al.  Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis , 1999, Nature Cell Biology.

[110]  P. Camilli,et al.  Generation of Coated Intermediates of Clathrin-Mediated Endocytosis on Protein-Free Liposomes , 1998, Cell.

[111]  J. Hinshaw,et al.  Dynamin Undergoes a GTP-Dependent Conformational Change Causing Vesiculation , 1998, Cell.

[112]  B Honig,et al.  Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. , 1997, Biophysical journal.

[113]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[114]  A. Minton,et al.  Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. , 1996, Biophysical journal.

[115]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[116]  Netz,et al.  Inhomogeneous fluid membranes: Segregation, ordering, and effective rigidity. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[117]  S. May,et al.  Spontaneous curvature and thermodynamic stability of mixed amphiphilic layers , 1995 .

[118]  E. Evans,et al.  Hidden dynamics in rapid changes of bilayer shape , 1994 .

[119]  T. M. Fischer,et al.  Bending stiffness of lipid bilayers. V. Comparison of two formulations , 1993 .

[120]  R. Lipowsky,et al.  Domain-induced budding of vesicles. , 1993, Physical review letters.

[121]  Seifert,et al.  Curvature-induced lateral phase segregation in two-component vesicles. , 1993, Physical review letters.

[122]  M. Kozlov,et al.  Effects of a cosurfactant on the stretching and bending elasticities of a surfactant monolayer , 1992 .

[123]  J. Seelig,et al.  Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts. , 1992, Biochemistry.

[124]  R. Waugh,et al.  Role of lamellar membrane structure in tether formation from bilayer vesicles. , 1992, Biophysical journal.

[125]  R. Waugh,et al.  Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. , 1992, Biophysical journal.

[126]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[127]  S. Leibler,et al.  Ordered and curved meso-structures in membranes and amphiphilic films , 1987 .

[128]  S. Leibler,et al.  Curvature instability in membranes , 1986 .

[129]  R. Hochmuth,et al.  Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment. , 1982, Biophysical journal.

[130]  V. Markin,et al.  Lateral organization of membranes and cell shapes. , 1981, Biophysical journal.

[131]  J. Mason,et al.  Geometric packing constraints in egg phosphatidylcholine vesicles. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[132]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.