Pyramidal tours and multiple objectives

In this study, we work on the traveling salesperson problems and bottleneck traveling salesperson problems that have special matrix structures and lead to polynomially solvable cases. We extend the problems to multiple objectives and investigate the properties of the nondominated points. We develop a pseudo-polynomial time algorithm to find a nondominated point for any number of objectives. Finally, we propose an approach to generate all nondominated points for the biobjective case.

[1]  G. Gutin,et al.  Exponential Neighborhoods and Domination Analysis for the TSP , 2007 .

[2]  Rainer E. Burkard,et al.  Efficiently solvable special cases of bottleneck travelling salesman problems , 1991, Discret. Appl. Math..

[3]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[4]  Yoshiaki Oda,et al.  An asymmetric analog of van der Veen conditions and the traveling salesman problem (II) , 2002, Eur. J. Oper. Res..

[5]  Murat Köksalan,et al.  Multiobjective traveling salesperson problem on Halin graphs , 2009, Eur. J. Oper. Res..

[6]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[7]  Xavier Gandibleux,et al.  Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications , 2003 .

[8]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[9]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[10]  Gerard Sierksma,et al.  Small and large TSP: Two polynomially solvable cases of the traveling salesman problem , 1993 .

[11]  Rainer E. Burkard,et al.  On the Euclidean TSP with a permuted Van der Veen matrix , 2004, Inf. Process. Lett..

[12]  Santosh N. Kabadi Polynomially Solvable Cases of the TSP , 2007 .

[13]  Md. Fazle Baki A new asymmetric pyramidally solvable class of the traveling salesman problem , 2006, Oper. Res. Lett..

[14]  Gerard Sierksma,et al.  Pyramidal tours and the traveling salesman problem , 1991 .

[15]  Gerhard J. Woeginger,et al.  Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey , 1998, SIAM Rev..

[16]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[17]  Jack A. A. van der Veen A New Class of Pyramidally Solvable Symmetric Traveling Salesman Problems , 1994, SIAM J. Discret. Math..

[18]  E. Lawler,et al.  Well-solved special cases , 1985 .