Pyramidal tours and multiple objectives
暂无分享,去创建一个
[1] G. Gutin,et al. Exponential Neighborhoods and Domination Analysis for the TSP , 2007 .
[2] Rainer E. Burkard,et al. Efficiently solvable special cases of bottleneck travelling salesman problems , 1991, Discret. Appl. Math..
[3] Abraham P. Punnen,et al. The traveling salesman problem and its variations , 2007 .
[4] Yoshiaki Oda,et al. An asymmetric analog of van der Veen conditions and the traveling salesman problem (II) , 2002, Eur. J. Oper. Res..
[5] Murat Köksalan,et al. Multiobjective traveling salesperson problem on Halin graphs , 2009, Eur. J. Oper. Res..
[6] Y. Aneja,et al. BICRITERIA TRANSPORTATION PROBLEM , 1979 .
[7] Xavier Gandibleux,et al. Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications , 2003 .
[8] Eugene L. Lawler,et al. Traveling Salesman Problem , 2016 .
[9] R. S. Laundy,et al. Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .
[10] Gerard Sierksma,et al. Small and large TSP: Two polynomially solvable cases of the traveling salesman problem , 1993 .
[11] Rainer E. Burkard,et al. On the Euclidean TSP with a permuted Van der Veen matrix , 2004, Inf. Process. Lett..
[12] Santosh N. Kabadi. Polynomially Solvable Cases of the TSP , 2007 .
[13] Md. Fazle Baki. A new asymmetric pyramidally solvable class of the traveling salesman problem , 2006, Oper. Res. Lett..
[14] Gerard Sierksma,et al. Pyramidal tours and the traveling salesman problem , 1991 .
[15] Gerhard J. Woeginger,et al. Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey , 1998, SIAM Rev..
[16] Rainer E. Burkard,et al. Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..
[17] Jack A. A. van der Veen. A New Class of Pyramidally Solvable Symmetric Traveling Salesman Problems , 1994, SIAM J. Discret. Math..
[18] E. Lawler,et al. Well-solved special cases , 1985 .