Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy

Surface-enhanced Raman scattering (SERS) is a powerful fingerprint vibrational spectroscopy with a single-molecule detection limit, but its applications are generally restricted to 'free-electron–like' metal substrates such as Au, Ag and Cu nanostructures. We have invented a shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique, using Au-core silica-shell nanoparticles (Au@SiO2 NPs), which makes SERS universally applicable to surfaces with any composition and any morphology. This protocol describes how to prepare shell-isolated nanoparticles (SHINs) with different well-controlled core sizes (55 and 120 nm), shapes (nanospheres, nanorods and nanocubes) and shell thicknesses (1–20 nm). It then describes how to apply SHINs to Pt and Au single-crystal surfaces with different facets in an electrochemical environment, on Si wafer surfaces adsorbed with hydrogen, on ZnO nanorods, and on living bacteria and fruit. With this method, SHINs can be prepared for use in ∼3 h, and each subsequent procedure for SHINERS measurement requires 1–2 h.

[1]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[2]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[3]  L. Liz‐Marzán,et al.  Silica gels with tailored, gold nanorod-driven optical functionalities , 2004 .

[4]  Jian-Feng Li,et al.  Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. , 2007, Chemical communications.

[5]  De‐Yin Wu,et al.  Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. , 2011, Journal of the American Chemical Society.

[6]  De‐Yin Wu,et al.  Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures , 2008 .

[7]  Shuming Nie,et al.  Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. , 2003, Analytical chemistry.

[8]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[9]  Zhilin Yang,et al.  SHINERS and plasmonic properties of Au Core SiO2 shell nanoparticles with optimal core size and shell thickness , 2013 .

[10]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[11]  B. Ren,et al.  Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. , 2004, Angewandte Chemie.

[12]  Zhilin Yang,et al.  Core-shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode. , 2011, Chemical communications.

[13]  R. Zare,et al.  Optical detection of single molecules. , 1997, Annual review of biophysics and biomolecular structure.

[14]  Chad A. Mirkin,et al.  Designing, fabricating, and imaging Raman hot spots , 2006, Proceedings of the National Academy of Sciences.

[15]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  De‐Yin Wu,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy of pyridine on smooth silver electrodes , 2011 .

[17]  A. Gewirth,et al.  Shell‐isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly) , 2012 .

[18]  Hongjie Dai,et al.  Protein microarrays with carbon nanotubes as multicolor Raman labels , 2008, Nature Biotechnology.

[19]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[20]  C. Murphy,et al.  Face-Dependent Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy of 2,2′-Bipyridine on Au(100) and Au(111) , 2012 .

[21]  Jian-Feng Li,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. , 2011, Annual review of analytical chemistry.

[22]  W. Smith,et al.  Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. , 2008, Nature nanotechnology.

[23]  Jeremy J Baumberg,et al.  Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. , 2005, Nano letters.

[24]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[25]  Marcel Mayor,et al.  Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes. , 2011, ACS nano.

[26]  M. J. Weaver,et al.  Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. , 2002, Journal of the American Chemical Society.

[27]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[28]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[29]  J. Zhao,et al.  Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. , 2008, Accounts of chemical research.

[30]  J. A. Creighton,et al.  ANOMALOUSLY INTENSE RAMAN SPECTRA OF PYRIDINE AT A SILVER ELECTRODE , 1977 .

[31]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[32]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[33]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[34]  Jing Zhao,et al.  Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. , 2006, Journal of the American Chemical Society.

[35]  Duncan Graham,et al.  The next generation of advanced spectroscopy: surface enhanced Raman scattering from metal nanoparticles. , 2010, Angewandte Chemie.

[36]  B. Ren,et al.  Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) Based on Gold-Core Silica-Shell Nanorods , 2011 .

[37]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[38]  Robert M. Corn,et al.  Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[39]  R. Aroca,et al.  Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF). , 2011, Angewandte Chemie.