The nonlinear PCA learning rule in independent component analysis

[1]  Erkki Oja,et al.  A class of neural networks for independent component analysis , 1997, IEEE Trans. Neural Networks.

[2]  Roberto Tagliaferri,et al.  Neural Nets WIRN VIETRI-96 , 1997, Perspectives in Neural Computing.

[3]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[4]  Juha Karhunen,et al.  Generalizations of principal component analysis, optimization problems, and neural networks , 1995, Neural Networks.

[5]  Erkki Oja,et al.  Blind Separation of Sources Using Nonlinear PCA Type Learning Algorithms , 1995 .

[6]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[7]  Juha Karhunen,et al.  Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.

[8]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[9]  Lei Xu,et al.  Least mean square error reconstruction principle for self-organizing neural-nets , 1993, Neural Networks.

[10]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[11]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[12]  J. Friedman Exploratory Projection Pursuit , 1987 .

[13]  E. Oja,et al.  On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .