Caracterización molecular de arveja arbustiva (Pisum sativum L) en la zona cerealista del departamento de Nariño, Colombia

La arveja (Pisum sativum L.) es uno de los cultivos domesticados mas antiguos, altamente valorados y ampliamente cultivados en todo el mundo. Sin embargo, en Colombia esta especie carece de estudios geneticos que permitan establecer la variabilidad total. Se estudio la estructura y diversidad genetica en una coleccion de 50 introducciones de arveja arbustiva provenientes del departamento de Narino con 16 marcadores de repeticion de secuencia simple (SSR). El promedio del contenido de informacion polimorfica (PIC) fue 0,62 con un total de 28 alelos y un promedio de 4 alelos por locus, siendo el locus AB71 y D21 los que amplificaron el mayor numero de alelos (6). La Heterocigosidad observada (Ho) fue 0.09± 0.08 y la esperada (He) 0.42± 0.33, indicando un alto nivel de endogamia (Fis= 0.60) demostrando la naturaleza homocigota de P. sativum. Se infirieron las relaciones geneticas por medio de un analisis de similitud y un analisis Bayesiano (STRUCTURE) detectando dos agrupaciones para los genotipos de arveja analizados, con una alta similitud con las caracteristicas agromorfologicas de cada genotipo. A pesar de la baja heterocigosis, los valores de heterocigosidad espera de la poblacion total (He = 0.60) y de la agrupacion 2 (He = 0.70) asi como la presencia de alelos unicos y raros, muestran un nivel de variabilidad genetica en la coleccion. Los resultados del presente estudio seran utiles para programas de pre - mejoramiento de la misma.

[1]  Rebecca C. Jones,et al.  Microsatellite and morphological analysis of Eucalyptus globulus populations , 2002 .

[2]  O. Kosterin,et al.  Efficiency of hand pollination in different pea (Pisum) species and subspecies , 2014 .

[3]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[4]  M. Delseny,et al.  Detection of sequences with Z-DNA forming potential in higher plants. , 1983, Biochemical and biophysical research communications.

[5]  N. Rosenberg,et al.  Refining the relationship between homozygosity and the frequency of the most frequent allele , 2008, Journal of Mathematical Biology.

[6]  C. Rameau,et al.  Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.) , 2005, Theoretical and Applied Genetics.

[7]  D. Rubiales,et al.  Identification of a New Gene for Resistance to Powdery Mildew in Pisum fulvum, a Wild Relative of Pea , 2007 .

[8]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[9]  Z. Xiaoyan,et al.  Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao , 2016 .

[10]  A. Flavell,et al.  Pea (Pisum sativum L.) in the Genomic Era , 2012 .

[11]  E. Paterniani,et al.  Pre-breeding: a link between genetic resources and maize breeding , 2000 .

[12]  V. Valpuesta,et al.  Impact of plant breeding on the genetic diversity of cultivated strawberry as revealed by expressed sequence tag-derived simple sequence repeat markers. , 2009 .

[13]  Genetic diversity in local cultivars of garden pea (Pisum sativum L.) conserved ‘on farm’ and in historical collections , 2014, Genetic Resources and Crop Evolution.

[14]  T. Ellis,et al.  An integrated and comparative view of pea genetic and cytogenetic maps , 2002 .

[15]  V. Zhukov,et al.  Pea Marker Database (PMD) – A new online database combining known pea (Pisum sativum L.) gene-based markers , 2017, PloS one.

[16]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[17]  Rod Peakall,et al.  GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update , 2012, Bioinform..

[18]  K. Mullis The unusual origin of the polymerase chain reaction. , 1990, Scientific American.

[19]  J. Renfrew Palaeoethnobotany: The Prehistoric Food Plants of the Near East and Europe , 1973 .

[20]  J. Saunders,et al.  Selection of international molecular standards for DNA fingerprinting of Theobroma cacao , 2004, Theoretical and Applied Genetics.

[21]  Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers , 2015, BMC Genetics.

[22]  J. Corander,et al.  Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis , 2008, Theoretical and Applied Genetics.

[23]  Rex T. Nelson,et al.  Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. , 2008, Genome.

[24]  D. Tautz,et al.  Simple sequences are ubiquitous repetitive components of eukaryotic genomes. , 1984, Nucleic acids research.

[25]  AhmadSajjad,et al.  Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers , 2012 .

[26]  Long Yan,et al.  Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers , 2008, Theoretical and Applied Genetics.

[27]  M. L. C. Vieira,et al.  Microsatellite markers: what they mean and why they are so useful , 2016, Genetics and molecular biology.

[28]  Florent Murat,et al.  Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identified Candidate Genes in Pisum sativum L. , 2011, G3: Genes | Genomes | Genetics.

[29]  R. Vinodhini,et al.  Application of DNA Fingerprinting for Plant Identification , 2017 .

[30]  Christopher Phillips,et al.  An overview of STRUCTURE: applications, parameter settings, and supporting software , 2013, Front. Genet..

[31]  P. Rajendrakumar,et al.  EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids , 2009, Euphytica.

[32]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[33]  Nacional de Colombia,et al.  Universidad Nacional de Colombia , 1959, Comparative Studies in Society and History.

[34]  Vikas Sharma,et al.  Genetic Diversity and Structure of Pea (Pisum sativum L.) Germplasm Based on Morphological and SSR Markers , 2017, Plant Molecular Biology Reporter.

[35]  V. S. Bogdanova,et al.  A study of potential ability for cross-pollination in pea originating from different parts of the world. , 2000 .

[36]  Nelson Mazón,et al.  Manual agrícola de frejol y otras leguminosas: Cultivos, variedades, costos de producción , 2013 .

[37]  I. Abdurakhmonov Introduction to Microsatellites: Basics, Trends and Highlights , 2016 .

[38]  G. DaríoPantoja,et al.  Evaluation and correlation of yield componentsin advanced lines of pea Pisum sativum with afila gene , 2014 .

[39]  V. Laucou,et al.  Genetic mapping in pea. 2. Identification of RAPD and SCAR markers linked to genes affecting plant architecture , 1998, Theoretical and Applied Genetics.

[40]  G. Kahl,et al.  Molecular marker technologies for plant improvement , 1995, World journal of microbiology & biotechnology.

[41]  J. Sauer Historical Geography of Crop Plants: A Select Roster , 1993 .

[42]  Sunil Archak Plant DNA fingerprinting: an overview. , 2000 .

[43]  Handbook of Legumes of World Economic Importance , 1982 .

[44]  L. Waits,et al.  Estimating the probability of identity among genotypes in natural populations: cautions and guidelines , 2001, Molecular ecology.

[45]  M. Gore,et al.  Status and Prospects of Association Mapping in Plants , 2008 .

[46]  E. Inoue,et al.  Development of Simple Sequence Repeat Markers in Chinese Chestnut and Their Characterization in Diverse Chestnut Cultivars , 2009 .

[47]  D. Grattapaglia,et al.  Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. , 2005, The Journal of heredity.

[48]  T. Sharma,et al.  Informative genomic microsatellite markers for efficient genotyping applications in sugarcane , 2008, Theoretical and Applied Genetics.

[49]  S. Southwick,et al.  Development and Characterization of Microsatellite Markers in Citrus , 2003 .

[50]  V. Laucou,et al.  Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum , 1998, Theoretical and Applied Genetics.

[51]  K. McPhee,et al.  Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition , 2012 .

[52]  D. Botstein,et al.  Construction of a genetic linkage map in man using restriction fragment length polymorphisms. , 1980, American journal of human genetics.

[53]  M. E. Pè,et al.  Development and application of EST-SSRs for diversity analysis in Ethiopian grass pea , 2011, Plant Genetic Resources.

[54]  L. Porter,et al.  New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments , 2011, Theoretical and Applied Genetics.

[55]  Ó. Coral,et al.  EVALUACIÓN AGRONÓMICA Y ECONÓMICA DE ARVEJA ARBUSTIVA (Pisum sativum L.) EN DIFERENTES ÉPOCAS DE SIEMBRA Y SISTEMAS DE TUTORADO , 2017 .

[56]  F. Rohlf NTSYS-pc: Microcomputer Programs for Numerical Taxonomy and Multivariate Analysis , 1987 .

[57]  G. Chung,et al.  DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing , 2018 .

[58]  Jie Liu,et al.  The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. , 2005, Hereditas.

[59]  P. Smýkal,et al.  Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses , 2011, Journal of Applied Genetics.

[60]  A. Shah,et al.  Molecular characterization of edible pea through EST-SSR markers , 2017 .

[61]  F. Ordon,et al.  A new diagnostic SSR marker for selection of theRym4/Rym5 locus in barley breeding , 2010, Journal of Applied Genetics.

[62]  Mahipal Singh Kesawat,et al.  Molecular markers: It’s application in crop improvement , 2009, Journal of Crop Science and Biotechnology.

[63]  M. Lynch,et al.  Analysis of population genetic structure with RAPD markers , 1994, Molecular ecology.

[64]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[65]  J. Leitão,et al.  Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.) , 2010, Euphytica.

[66]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[67]  A. Flavell,et al.  Genetic diversity in European Pisum germplasm collections , 2012, Theoretical and Applied Genetics.

[68]  G. Aubert,et al.  Genetic diversity within Pisum sativum using protein- and PCR-based markers , 2004, Theoretical and Applied Genetics.