A Survey of Free Space Optics (FSO) Communication Systems, Links, and Networks

The next generation (NG) optical technologies will unveil certain unique features, namely ultra-high data rate, broadband multiple services, scalable bandwidth, and flexible communications for manifold end-users. Among the optical technologies, free space optical (FSO) technology is a key element to achieve free space data transmission according to the requirements of the future technologies, which is due to its cost effective, easy deployment, high bandwidth enabler, and high secured. In this article, we give the overview of the recent progress on FSO technology and the factors that will lead the technology towards ubiquitous application. As part of the review, we provided fundamental concepts across all types of FSO system, including system architecture comprising of single beam and multiple beams. The review is further expanded into the investigation of rain and haze effects toward FSO signal propagation. The final objective that we cover is the scalability of an FSO network via the implementations of hybrid multi-beam FSO system with wavelength division multiplexing (WDM) technology.

[1]  Redhwan Q. Shaddad,et al.  Hybrid WDM/multibeam free-space optics for multigigabit access network , 2015, Photonic Network Communications.

[2]  Luca Baldini,et al.  Real-Time Rain Rate Evaluation via Satellite Downlink Signal Attenuation Measurement , 2017, Sensors.

[3]  Md. Rafiqul Islam,et al.  Analysis of Rain Effects on Terrestrial Free Space Optics based on Data Measured in Tropical Climate , 2012 .

[4]  Sugianto Trisno,et al.  Design and Analysis of Advanced Free Space Optical Communication Systems , 2006 .

[5]  Mohamed-Slim Alouini,et al.  Adaptive Coded Modulation for IM/DD Free-Space Optical Backhauling: A Probabilistic Shaping Approach , 2020, IEEE Transactions on Communications.

[6]  Michael Nicholas,et al.  Thin Fresnel zone plate lenses for focusing underwater sound , 2015 .

[7]  R. Green,et al.  Comparison of pulse position modulation and pulse width modulation for application in optical communications , 2007 .

[8]  Syed Alwee Aljunid,et al.  Optimization of free space optics parameters: An optimum solution for bad weather conditions , 2013 .

[9]  Wajdi Al-Khateeb,et al.  Experimental evaluation of multiple transmitters/receivers on free space optics link , 2011, 2011 IEEE Student Conference on Research and Development.

[10]  Fauzi Abdul Wahab,et al.  Multiple Transmitters & Receivers for Free Space Optical Communication Link Performance Analysis , 2016 .

[11]  Zabih Ghassemlooy,et al.  Optical Wireless Communications: System and Channel Modelling with MATLAB® , 2012 .

[12]  Guifang Li,et al.  Theoretical sensitivity of direct-detection multilevel modulation formats for high spectral efficiency optical communications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  D. Szabra,et al.  Analysis of Free-Space Optics Development , 2017 .

[14]  R. Rogers,et al.  An Inversion Problem on Inferring the Size Distribution of Precipitation Areas from Raingage Measurements , 1984 .

[15]  Steve Hranilovic,et al.  Wireless optical communication systems , 2004 .

[16]  S. Hitam,et al.  Analysis of the effect of haze on free space optical communication in the Malaysian environment , 2007, 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications.

[17]  S. R. Forrest,et al.  Optical detectors: Three contenders: Depending on the application, the photoeonductor, p-i-n diode, or avalanche photodiode may prove the best choice , 1986, IEEE Spectrum.

[18]  S. Babani,et al.  Free Space Optical Communication: The Main Challenges and Its Possible Solution , 2014 .

[19]  D. Giggenbach,et al.  Optical Satellite Downlinks to Optical Ground Stations and High-Altitude Platforms , 2007, 2007 16th IST Mobile and Wireless Communications Summit.

[20]  Sang-Kook Han,et al.  Outdoor Visible Light Communication for inter- vehicle communication using Controller Area Network , 2012, 2012 Fourth International Conference on Communications and Electronics (ICCE).

[21]  W. Petersen,et al.  Measurements and Modeling of the Full Rain Drop Size Distribution , 2019, Atmosphere.

[22]  Peng Liu,et al.  A Study on Atmospheric Turbulence Effects in Full-Optical Free-Space Communication Systems , 2010, 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

[23]  Redhwan Q. Shaddad,et al.  Single and multiple transceiver simulation modules for free-space optical channel in tropical malaysian weather , 2013, 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC).

[24]  Robert K. Crane,et al.  Space‐time structure of rain rate fields , 1990 .

[25]  Eric C. Eisenberg,et al.  Optical attenuation in fog and clouds , 2001, SPIE ITCom.

[26]  P. Ray,et al.  Broadband complex refractive indices of ice and water. , 1972, Applied optics.

[27]  P. Pagé,et al.  Characteristics of precipitation for propagation modelling , 1996 .

[28]  Ali A. Ali Mazin Performance analysis of terrestrial WDM-FSO Link under Different Weather Channel , 2016 .

[29]  Haji M. Furqan,et al.  Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey , 2019, IEEE Communications Surveys & Tutorials.

[30]  Theresa H. Carbonneau,et al.  Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace , 1998, Other Conferences.

[31]  Umair Ahmed Korai,et al.  Model for the Prediction of Rain Attenuation Affecting Free Space Optical Links , 2018, Electronics.

[32]  Roberto Rojas-Cessa,et al.  A Survey on Acquisition, Tracking, and Pointing Mechanisms for Mobile Free-Space Optical Communications , 2018, IEEE Communications Surveys & Tutorials.

[33]  Eric J. Korevaar,et al.  Understanding the performance of free-space optics [Invited] , 2003 .

[34]  Songnian Fu,et al.  Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique , 2009, IEEE Photonics Journal.

[35]  Mitsuji Matsumoto,et al.  IrBurst Modeling and Performance Evaluation for Large Data Block Exchange over High-Speed IrDA Links , 2008, IEICE Trans. Commun..

[36]  Comparison of the rain drop size distribution model in tropical region , 2004, 2004 RF and Microwave Conference (IEEE Cat. No.04EX924).

[37]  Cheng-Xiang Wang,et al.  Optical Wireless Communication Channel Measurements and Models , 2018, IEEE Communications Surveys & Tutorials.

[38]  M. Katzman,et al.  Optical communication systems , 1985, Proceedings of the IEEE.

[39]  Nader Moayeri,et al.  Project IEEE 802.16 Broadband Wireless Access Working Group Title Power-Law Parameters of Rain Specific Attenuation , 1999 .

[40]  Rakesh Kumar Jha,et al.  Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma–Gamma fading model , 2017 .

[41]  J. R. Souza,et al.  FREE SPACE OPTICAL COMMUNICATION SYSTEMS: A FEASIBILITY STUDY FOR DEPLOYMENT IN BRAZIL , 2004 .

[42]  Aditi Malik,et al.  Free Space Optics: Current Applications and Future Challenges , 2015 .

[43]  Murat Uysal,et al.  Optical wireless communications — An emerging technology , 2016, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[44]  P. Thiennviboon,et al.  A New Rain Attenuation Prediction Model for the Earth-Space Links , 2018, IEEE Transactions on Antennas and Propagation.

[46]  Amit Gupta,et al.  Channel Performance Evaluation of Wireless Communication Networks , 2018, 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC).

[47]  Carlton W. Ulbrich,et al.  Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band , 1977 .

[48]  Pardeep Kaur,et al.  Multibeam WDM-FSO System: An Optimum Solution for Clear and Hazy Weather Conditions , 2017, Wirel. Pers. Commun..

[49]  Mohammad Syuhaimi Ab-Rahman,et al.  Cost-Effective Fabrication of Self-Made 1×12 Polymer Optical Fiber-Based Optical Splitters for Automotive Application , 2009 .

[50]  S. M. Zafaruddin,et al.  Performance of Opportunistic Receiver Beam Selection in Multiaperture OWC Systems Over Foggy Channels , 2020, IEEE Systems Journal.

[51]  Yaojun Qiao,et al.  BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation , 2015, IEEE Photonics Journal.

[52]  Md. Rafiqul Islam,et al.  Investigating of rain attenuation impact on Free Space Optics propagation in tropical region , 2011, 2011 4th International Conference on Mechatronics (ICOM).

[53]  Ebrahim E. Elsayed,et al.  Performance enhancement of the power penalty in DWDM FSO communication using DPPM and OOK modulation , 2018, Optical and Quantum Electronics.

[54]  Kamran Kiasaleh Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence , 2005, IEEE Transactions on Communications.

[55]  Isaac I. Kim,et al.  Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications , 2001, SPIE Optics East.

[56]  Ratul Aggarwal,et al.  REVIEW ON OPTIMIZATION OF WIRELESS OPTICAL COMMUNICATION SYSTEM , 2014 .

[58]  A. W. Naji,et al.  Proposed parameters of specific rain attenuation prediction for Free Space Optics link operating in tropical region , 2013 .

[59]  E. Leitgeb,et al.  Transmission of high data rate optical signals in fog and snow conditions , 2009, 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology.

[60]  H. Veiga,et al.  Experimental Performance Study of a Very High Speed Free Space Optics Link at the University of Beira Interior Campus: a Case Study , 2008, 2008 IEEE International Symposium on Signal Processing and Information Technology.

[61]  M. A. Taha,et al.  Optimized FSO System Performance over Atmospheric Turbulence Channels with Pointing Error and Weather Conditions , 2016 .

[62]  F. D. Kashani,et al.  Beam propagation analysis of a multi beam FSO system with partially flat-topped laser beams in turbulent atmosphere , 2012 .

[63]  John Sunday Ojo,et al.  Rain Rate and Rain Attenuation Prediction for Satellite Communication in Ku and Ka Bands Over Nigeria. , 2008 .

[64]  Zhuo Wang,et al.  PDM-DPSK-MPPM hybrid modulation for multi-hop free-space optical communication , 2016 .

[65]  Stuart D. Milner,et al.  Flexible optical wireless links and networks , 2003, IEEE Commun. Mag..

[66]  Gurpreet Kaur,et al.  Free Space Optical Using Different Modulation Techniques – A Review , 2017 .

[67]  N. Karafolas,et al.  Optical satellite networks , 2000, Journal of Lightwave Technology.

[68]  J. Strohbehn Laser beam propagation in the atmosphere , 1978 .

[70]  V. N. KELKAR,et al.  Size Distribution of Raindrops , 1961, Nature.

[71]  A. D. Panagopoulos,et al.  On the Earth-Space Site Diversity Modeling: A Novel Physical-Mathematical Outage Prediction Model , 2012, IEEE Transactions on Antennas and Propagation.

[72]  Naresh Kumar,et al.  Performance analysis of different modulation format on free space optical communication system , 2013 .

[73]  Shiwen Mao,et al.  A survey of free space optical networks , 2017, Digit. Commun. Networks.

[74]  Radek Martinek,et al.  Influence of simulated atmospheric effect combined with modulation formats on FSO systems , 2019, Opt. Switch. Netw..

[75]  Zhensen Wu,et al.  Analytic Specific Attenuation Model for Rain for Use in Prediction Methods , 2001 .

[76]  Otakar Wilfert,et al.  An Introduction to Free-space Optical Communications , 2010 .

[77]  Henri Sauvageot,et al.  Rain cells shape and orientation distribution in south-west of France , 2000 .

[78]  L. Andrews,et al.  Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media , 2001 .

[79]  Isaac I. Kim,et al.  Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm , 1999, Optics East.

[80]  H. Alma,et al.  Effect of weather conditions on quality of Free Space Optics links (with focus on Malaysia) , 2008, 2008 International Conference on Computer and Communication Engineering.

[81]  H. Gebbie Laser Beam Propagation in the Atmosphere , 1981 .

[82]  Taissir Youssef Elganimi,et al.  Performance Comparison between OOK, PPM and PAM Modulation Schemes for Free Space Optical (FSO) Communication Systems: Analytical Study , 2013 .

[83]  Abu Bakar Mohammad Optimization of FSO system in tropical weather using multiple beams , 2014, 2014 IEEE 5th International Conference on Photonics (ICP).

[84]  Maha Achour,et al.  Simulating Atmospheric Free-Space Optical Propagation; Part II: Haze, Fog, and Low Clouds Attenuations , 2002, SPIE ITCom.

[85]  J. Vijay,et al.  Comparative Analysis of Free Space Optics and Single Mode Fiber , 2016 .

[86]  J. Joss,et al.  Shapes of Raindrop Size Distributions , 1978 .

[87]  Gaurav Soni FREE SPACE OPTICS SYSTEM : PERFORMANCE AND LINK AVAILABILITY , 2011 .

[88]  R. Houze Stratiform precipitation in regions of convection : A meteorological paradox ? , 1997 .

[89]  Ashok Kumar Turuk,et al.  Estimation of Link Margin for Performance Analysis of FSO Network , 2017 .

[90]  Carlo Capsoni,et al.  Extension of ITU-R Method for conversion of rain rate statistics from various integration times to one minute , 2008 .

[91]  Sushank Chaudhary,et al.  A cost effective 100 Gbps hybrid MDM–OCDMA–FSO transmission system under atmospheric turbulences , 2017 .

[92]  Robert K. Crane,et al.  ACTS propagation experiment: attenuation distribution observations and prediction model comparisons , 1997, Proc. IEEE.

[93]  Robert A. Black,et al.  The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing , 2001 .

[94]  G. Feingold,et al.  The Lognormal Fit to Raindrop Spectra from Frontal Convective Clouds in Israel , 1986 .

[95]  Julius Goldhirsh,et al.  Two‐dimension visualization of rain cell structures , 2000 .

[96]  T. Konrad,et al.  Statistical Models of Summer Rainshowers Derived from Fine-Scale Radar Observations , 1978 .

[97]  Otakar Wilfert,et al.  Optimal laser diode operating mode with unstable operating temperature in turbulent atmosphere , 2008, SPIE Photonics Europe.

[98]  George S. Tombras,et al.  Performance analysis of free-space optical communication systems over atmospheric turbulence channels , 2009, IET Commun..

[99]  S. Majumder PERFORMANE EVALUATION OF THE FREE SPACE OPTICAL ( FSO ) COMMUNICATION WITH THE EFFECTS OF THE ATMOSPHERIC TURBULANCES , 2022 .

[100]  E. Costa,et al.  Rain attenuation measurements at 15 and 18 GHz , 2002 .

[101]  Propagation data and prediction methods required for the design of terrestrial line-of-sight systems , 2001 .

[102]  A. J. Townsend A Study of the Raindrop Size Distribution and its effect on Microwave Attenuation , 2011 .

[103]  T. Zhu,et al.  Incoherent optical modulation of graphene based on inline fiber Mach-Zehnder interferometer , 2017, 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[104]  E. Matida,et al.  Characterization of Medication Velocity and Size Distribution from Pressurized Metered-Dose Inhalers by Phase Doppler Anemometry. , 2016, Journal of Aerosol Medicine.

[105]  Nur Haedzerin Md. Noor,et al.  Performance Analysis of a Free Space Optics Link with Multiple Transmitters/Receivers , 2012 .

[106]  Xian Liu,et al.  Free-space optics optimization models for building sway and atmospheric interference using variable wavelength , 2009, IEEE Transactions on Communications.

[107]  Siti Barirah Ahmad Anas,et al.  Performance analysis on 16-channels wavelength division multiplexing in free space optical transmission under tropical regions environment , 2012 .

[108]  Heinz Willebrand,et al.  Free Space Optics: Enabling Optical Connectivity in Today's Networks , 2001 .

[109]  Redhwan Q. Shaddad,et al.  Enhancement of free space optical link in heavy rain attenuation using multiple beam concept , 2013 .

[110]  N. Avlonitis,et al.  Multilevel amplitude shift keying in dispersion uncompensated optical systems , 2006 .

[111]  Akhil Gupta,et al.  A Survey of Free Space Optical Communication Network Channel over Optical Fiber Cable Communication , 2014 .

[112]  Vaclav Kvicera,et al.  Fog attenuation dependence on atmospheric visibility at two wavelengths for FSO link planning , 2010, 2010 Loughborough Antennas & Propagation Conference.

[113]  Abdulsalam Alkholidi,et al.  Free Space Optical Communications — Theory and Practices , 2014 .

[114]  Jitender S. Deogun,et al.  Classification Framework for Free Space Optical Communication Links and Systems , 2019, IEEE Communications Surveys & Tutorials.

[115]  Zabih Ghassemlooy,et al.  Digital pulse interval modulation for optical communications , 1998 .

[116]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[117]  H.H. Refai,et al.  Alignment and tracking of a free-space optical communications link to a UAV , 2005, 24th Digital Avionics Systems Conference.

[118]  James R. Lesh,et al.  Capacity Limit of the Noiseless, Energy-Efficient Optical PPM Channel , 1983, IEEE Trans. Commun..

[119]  Erich Leitgeb,et al.  Further results on fog modeling for terrestrial free-space optical links , 2012 .