The Linear Space of Hausdorff Continuous Interval Functions

In this paper we discuss the algebraic structure of the space H(X) of finite Hausdorff continuous interval functions defined on an arbitrary topological space X. In particular, we show that H(X) is a linear space over R containing C(X), the space of continuous real functions on X, as a linear subspace. In addition, we prove that the order on H(X) is compatible with the linear structure introduced here so that H(X) is an Archimedean vector lattice.

[1]  Zvi Artstein Extensions of Lipschitz selections and an application to differential inclusions , 1991 .

[2]  Roumen Anguelov,et al.  The Set of Hausdorff Continuous Functions— The Largest Linear Space of Interval Functions , 2006, Reliab. Comput..

[3]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[4]  Bl. Sendov Best Hausdorff Approximations , 1990 .

[5]  Svetoslav Markov On the Algebraic Properties of Intervals and Some Applications , 2001, Reliab. Comput..

[6]  J. Cooper Riesz spaces , 2012 .

[7]  Nicolae Dăneţ When is every Hausdorff continuous interval-valued function bounded by continuous functions? , 2009 .

[8]  R. Anguelov Rational Extensions of C(X) via Hausdorff Continuous Functions , 2007, 0712.0507.

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  Evgenija D. Popova Explicit Description of AE Solution Sets for Parametric Linear Systems , 2012, SIAM J. Matrix Anal. Appl..

[11]  J. Mack On a class of countably paracompact spaces , 1965 .

[12]  Beatriz Ricarte,et al.  On the Computation of Output Bounds for Compartmental In-Series Models under Parametric Uncertainty , 2012 .

[13]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[14]  A. Zaanen Riesz Spaces, II , 1983 .

[15]  René Baire,et al.  Lecons sur les fonctions discontinues , 1905 .

[16]  Zvi Artstein,et al.  Piecewise linear approximations of set-valued maps , 1989 .

[17]  S. Markov,et al.  Biomathematics and Interval Analysis: A Prosperous Marriage , 2010 .

[18]  A Cellina On the differential inclusion $x\sp{\prime} \in [-1,\,+1]$ , 1980 .

[19]  Roumen Anguelov,et al.  Algebraic and topological structure of some spaces of set-valued maps , 2013, Comput. Math. Appl..

[20]  Roumen Anguelov,et al.  Solving large classes of nonlinear systems of PDEs , 2007, Comput. Math. Appl..

[21]  Z. Artstein A calculus for set-valued maps and set-valued evolution equations , 1995 .

[22]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[23]  Roumen Anguelov,et al.  Order convergence structure on C(X) , 2005 .

[24]  R. Anguelov Dedekind Order Completion of C (X) by Hausdorff Continuous Functions , 2004, math/0407272.