A primal-proximal heuristic applied to the French Unit-commitment problem

This paper is devoted to the numerical resolution of unit-commitment problems, with emphasis on the French model optimizing the daily production of electricity. The solution process has two phases. First a Lagrangian relaxation solves the dual to find a lower bound; it also gives a primal relaxed solution. We then propose to use the latter in the second phase, for a heuristic resolution based on a primal proximal algorithm. This second step comes as an alternative to an earlier approach, based on augmented Lagrangian (i.e. a dual proximal algorithm). We illustrate the method with some real-life numerical results. A companion paper is devoted to a theoretical study of the heuristic in the second phase.

[1]  A. A. Goldstein,et al.  Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.

[2]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[3]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[4]  R. Bellman,et al.  A NUMERICAL INVERSION OF THE LAPLACE TRANSFORM , 1963 .

[5]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[6]  M. Hestenes Multiplier and gradient methods , 1969 .

[7]  J. E. Falk Lagrange Multipliers and Nonconvex Programs , 1969 .

[8]  Arthur M. Geoffrion,et al.  Primal Resource-Directive Approaches for Optimizing Nonlinear Decomposable Systems , 1970, Oper. Res..

[9]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[10]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[11]  M. Wagner,et al.  Generalized Linear Programming Solves the Dual , 1976 .

[12]  D. Bertsekas Convexification procedures and decomposition methods for nonconvex optimization problems , 1979 .

[13]  G. Cohen Auxiliary problem principle and decomposition of optimization problems , 1980 .

[14]  D. Bertsekas,et al.  Optimal short-term scheduling of large-scale power systems , 1981, CDC 1981.

[15]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[16]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[17]  M. Guignard,et al.  Lagrangean decomposition for integer programming: theory and applications , 1987 .

[18]  Francisco D. Galiana,et al.  Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .

[19]  K. Kiwiel A Dual Method for Certain Positive Semidefinite Quadratic Programming Problems , 1989 .

[20]  H. Uzawa,et al.  Preference, production, and capital: Iterative methods for concave programming , 1989 .

[21]  A. Renaud,et al.  Daily generation scheduling optimization with transmission constraints: a new class of algorithms , 1992 .

[22]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[23]  A. Renaud,et al.  Daily generation management at Electricite de France: from planning towards real time , 1993, IEEE Trans. Autom. Control..

[24]  K. Kiwiel A Cholesky dual method for proximal piecewise linear programming , 1994 .

[25]  Gerald B. Sheblé,et al.  Unit commitment literature synopsis , 1994 .

[26]  Ross Baldick,et al.  The generalized unit commitment problem , 1995 .

[27]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[28]  C. Lemaréchal,et al.  Bundle methods applied to the unit-commitment problem , 1996 .

[29]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[30]  K. Kiwiel,et al.  Solving Unit Commitment Problems in Power Production Planning , 1997 .

[31]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[32]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[33]  V. Quintana,et al.  An interior-point/cutting-plane method to solve unit commitment problems , 1999, Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No.99CH36351).

[34]  Michael Patriksson,et al.  Ergodic, primal convergence in dual subgradient schemes for convex programming , 1999, Mathematical programming.

[35]  J. Birge,et al.  Using integer programming to refine Lagrangian-based unit commitment solutions , 2000 .

[36]  Werner Römisch,et al.  Unit commitment in power generation – a basic model and some extensions , 2000, Ann. Oper. Res..

[37]  Stefan Feltenmark,et al.  Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..

[38]  Claude Lemaréchal,et al.  Lagrangian Relaxation , 2000, Computational Combinatorial Optimization.

[39]  Claude Lemaréchal,et al.  A geometric study of duality gaps, with applications , 2001, Math. Program..

[40]  Jean Charles Gilbert,et al.  Some Theory of Nonsmooth Optimization , 2003 .

[41]  Claude Lemaréchal,et al.  The omnipresence of Lagrange , 2003, 4OR.

[42]  Claude Lemaréchal,et al.  On a primal-proximal heuristic in discrete optimization , 2005, Math. Program..

[43]  W. Römisch,et al.  Stochastic unit commitment in hydro-thermal power production planning , 2005 .

[44]  F. Vanderbeck,et al.  A generic view at the Dantzig-Wolfe decomposition approach in Mixed Integer Programming: paving the way for a generic code. , 2005 .