Numbers are not like words: Different pathways for literacy and numeracy

Literacy and numeracy are two fundamental cognitive skills that require mastering culturally-invented symbolic systems for representing spoken language and quantities. How numbers and words are processed in the human brain and their temporal dynamics remain unclear. Using MEG (magnetoencephalography), we find brain activation differences for literacy and numeracy from early stages of processing in the temporal-occipital and temporal-parietal regions. Native speakers of Spanish were exposed to visually presented words, pseudowords, strings of numbers, strings of letters and strings of symbols while engaged in a go/no-go task. Results showed more evoked neuromagnetic activity for words and pseudowords compared to symbols at ~120-130ms in the left occipito-temporal and temporal-parietal cortices (angular gyrus and intra-parietal sulcus) and at ~200ms in the left inferior frontal gyrus and left temporal areas. In contrast, numbers showed more activation than symbols at similar time windows in homologous regions of the right hemisphere: occipito-temporal and superior and middle temporal cortices at ~100-130ms. A direct comparison between the responses to words and numbers confirmed this distinct lateralization for the two stimulus types. These results suggest that literacy and numeracy follow distinct processing streams through the left and right hemispheres, respectively, and that the temporal-parietal and occipito-temporal regions may interact during processing alphanumeric stimuli.

[1]  Jonathan Winawer,et al.  A Brain Area for Visual Numerals , 2013, The Journal of Neuroscience.

[2]  Marc Brysbaert,et al.  The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. , 2010, Cerebral cortex.

[3]  R. Biscay,et al.  Testing topographic differences between event related brain potentials by using non-parametric combinations of permutation tests. , 1997, Electroencephalography and clinical neurophysiology.

[4]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[5]  S. Dehaene,et al.  THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING , 2003, Cognitive neuropsychology.

[6]  Marc Brysbaert,et al.  Complementary hemispheric specialization for language production and visuospatial attention , 2013, Proceedings of the National Academy of Sciences.

[7]  R. Blair,et al.  An alternative method for significance testing of waveform difference potentials. , 1993, Psychophysiology.

[8]  M. Farah,et al.  Neural Specialization for Letter Recognition , 2002, Journal of Cognitive Neuroscience.

[9]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[10]  S. Taulu,et al.  Applications of the signal space separation method , 2005, IEEE Transactions on Signal Processing.

[11]  N. Kanwisher,et al.  Visual word processing and experiential origins of functional selectivity in human extrastriate cortex , 2007, Proceedings of the National Academy of Sciences.

[12]  Stanislas Dehaene,et al.  Arithmetic and the Brain This Review Comes from a Themed Issue on Cognitive Neuroscience Edited the Intraparietal Sulcus and Number Sense Number Sense in the Animal Brain , 2022 .

[13]  Marinella Cappelletti,et al.  The Role of Right and Left Parietal Lobes in the Conceptual Processing of Numbers , 2009, Journal of Cognitive Neuroscience.

[14]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[15]  S Dehaene,et al.  CALCULATING WITHOUT READING: UNSUSPECTED RESIDUAL ABILITIES IN PURE ALEXIA , 2000, Cognitive neuropsychology.

[16]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[17]  B. Mazoyer,et al.  Neural Correlates of Simple and Complex Mental Calculation , 2001, NeuroImage.

[18]  Manuel Carreiras,et al.  Left fronto-temporal dynamics during agreement processing: Evidence for feature-specific computations , 2013, NeuroImage.

[19]  E. J. Carter,et al.  Functional Imaging of Numerical Processing in Adults and 4-y-Old Children , 2006, PLoS biology.

[20]  S. Dehaene,et al.  The unique role of the visual word form area in reading , 2011, Trends in Cognitive Sciences.

[21]  Manuel Carreiras,et al.  Where syntax meets math: Right intraparietal sulcus activation in response to grammatical number agreement violations , 2010, NeuroImage.

[22]  M. Carreiras,et al.  Orthographic Coding: Brain Activation for Letters, Symbols, and Digits. , 2015, Cerebral cortex.

[23]  Eduardo Martínez-Montes,et al.  False discovery rate and permutation test: An evaluation in ERP data analysis , 2010, Statistics in medicine.

[24]  Anders M. Dale,et al.  Dynamic Statistical Parametric Neurotechnique Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000 .

[25]  Marc Brysbaert,et al.  Cerebral Lateralization of Frontal Lobe Language Processes and Lateralization of the Posterior Visual Word Processing System , 2008, Journal of Cognitive Neuroscience.

[26]  M. McCloskey,et al.  Shared versus separate processes for letter and digit identification , 2014, Cognitive neuropsychology.

[27]  S. Dehaene,et al.  [Reading numbers in pure alexia: effects of the task and hemispheric specialization]. , 1995, Revue neurologique.

[28]  C. Davis,et al.  BuscaPalabras: A program for deriving orthographic and phonological neighborhood statistics and other psycholinguistic indices in Spanish , 2005, Behavior research methods.

[29]  A. Toga,et al.  Mapping brain asymmetry , 2003, Nature Reviews Neuroscience.

[30]  Nathalie Tzourio-Mazoyer,et al.  Hemispheric specialization for language , 2004, Brain Research Reviews.

[31]  C. Price,et al.  The Interactive Account of ventral occipitotemporal contributions to reading , 2011, Trends in Cognitive Sciences.

[32]  M. Behrmann,et al.  Number reading in pure alexia—A review , 2011, Neuropsychologia.

[33]  Elizabeth M. Brannon,et al.  Experience-dependent Hemispheric Specialization of Letters and Numbers Is Revealed in Early Visual Processing , 2014, Journal of Cognitive Neuroscience.

[34]  A. Kleinschmidt,et al.  A Supramodal Number Representation in Human Intraparietal Cortex , 2003, Neuron.

[35]  S. Dehaene,et al.  Differential Contributions of the Left and Right Inferior Parietal Lobules to Number Processing , 1999, Journal of Cognitive Neuroscience.

[36]  Jeffrey R. Binder,et al.  Tuning of the human left fusiform gyrus to sublexical orthographic structure , 2006, NeuroImage.

[37]  Myra A. Fernandes,et al.  Functional specificity of the visual word form area: General activation for words and symbols but specific network activation for words , 2008, Brain and Language.

[38]  Daniel Ansari,et al.  Symbol processing in the left angular gyrus: Evidence from passive perception of digits , 2011, NeuroImage.

[39]  R. Salmelin,et al.  Dynamics of letter string perception in the human occipitotemporal cortex. , 1999, Brain : a journal of neurology.

[40]  T. Allison,et al.  Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. , 1994, Cerebral cortex.

[41]  W. Penny,et al.  Reading Front to Back: MEG Evidence for Early Feedback Effects During Word Recognition , 2012, Cerebral cortex.

[42]  Katherine L. Wheat,et al.  During Visual Word Recognition, Phonology Is Accessed within 100 ms and May Be Mediated by a Speech Production Code: Evidence from Magnetoencephalography , 2010, The Journal of Neuroscience.

[43]  C. Fiebach,et al.  The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. , 2003, Cerebral cortex.

[44]  Brian Butterworth,et al.  Discrete and analogue quantity processing in the parietal lobe: a functional MRI study. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Dale,et al.  Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.

[46]  S. Dehaene,et al.  Functional and Structural Alterations of the Intraparietal Sulcus in a Developmental Dyscalculia of Genetic Origin , 2003, Neuron.

[47]  J. Démonet,et al.  Cortical areas involved in Arabic number reading , 2008, Neurology.

[48]  Joseph T Devlin,et al.  The myth of the visual word form area , 2003, NeuroImage.

[49]  Thad A. Polk,et al.  Neural Dissociation of Number from Letter Recognition and Its Relationship to Parietal Numerical Processing , 2012, Journal of Cognitive Neuroscience.

[50]  Cathy J. Price,et al.  A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading , 2012, NeuroImage.

[51]  Orrin Devinsky,et al.  Sequential then Interactive Processing of Letters and Words in the Left Fusiform Gyrus , 2012, Nature Communications.

[52]  A. Damasio,et al.  Troubled letters but not numbers. Domain specific cognitive impairments following focal damage in frontal cortex. , 1990, Brain : a journal of neurology.

[53]  L. Pylkkänen,et al.  Neuromagnetic Evidence for the Timing of Lexical Activation: An MEG Component Sensitive to Phonotactic Probability but Not to Neighborhood Density , 2002, Brain and Language.

[54]  M. Seghier,et al.  An anatomical signature for literacy , 2009, Nature.

[55]  H. Renvall,et al.  Functional Magnetic Resonance Imaging Blood Oxygenation Level-Dependent Signal and Magnetoencephalography Evoked Responses Yield Different Neural Functionality in Reading , 2011, The Journal of Neuroscience.

[56]  Ellen F. Lau,et al.  A cortical network for semantics: (de)constructing the N400 , 2008, Nature Reviews Neuroscience.

[57]  Michael S C Thomas,et al.  Multiple Routes from Occipital to Temporal Cortices during Reading , 2011, The Journal of Neuroscience.

[58]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.