Nanocelluloses: Emerging Building Blocks for Renewable Materials

[1]  J. Sugiyama,et al.  Characterization of starch based nanocomposites , 2007 .

[2]  S. Eichhorn,et al.  Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. , 2005, Biomacromolecules.

[3]  Kristiina Oksman,et al.  Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.

[4]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[5]  Wim Thielemans,et al.  Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites , 2006 .

[6]  S. Nutt,et al.  Cellulose micro/nanocrystals reinforced polyurethane , 2006 .

[7]  K. Oksman,et al.  Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials , 2007 .

[8]  M. Wolcott,et al.  Study of the Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing , 2008 .

[9]  K. Oksman,et al.  Manufacturing process of cellulose whiskers/polylactic acid nanocomposites , 2006 .

[10]  T. Zimmermann,et al.  Mechanical and Morphological Properties of Cellulose Fibril Reinforced Nanocomposites , 2005 .

[11]  A. Dufresne,et al.  Preparation of poly(styrene‐co‐hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization , 2009 .

[12]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[13]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[14]  M. Vignon,et al.  Microfibrillated cellulose from the peel of prickly pear fruits , 2009 .

[15]  R. Borsali,et al.  Static and Dynamic Light Scattering from Polyelectrolyte Microcrystal Cellulose , 2002 .

[16]  A. Isogai,et al.  A novel method to improve wet strength of paper , 2005 .

[17]  H. Chanzy,et al.  Suspensions of cellulose microfibrils from sugar beet pulp , 1999 .

[18]  Richard A. Venditti,et al.  The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications , 2010 .

[19]  Lina Zhang,et al.  Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers , 2009 .

[20]  Kristin Syverud,et al.  Strength and barrier properties of MFC films , 2009 .

[21]  S. Matthews,et al.  Cellulose Crystallites: A New and Robust Liquid Crystalline Medium for the Measurement of Residual Dipolar Couplings , 2000 .

[22]  P. Langan,et al.  Periodic disorder along ramie cellulose microfibrils. , 2003, Biomacromolecules.

[23]  J. Cavaillé,et al.  Plasticized PVC reinforced with cellulose whiskers. I. Linear viscoelastic behavior analyzed through the quasi-point defect theory , 1999 .

[24]  L. Heux,et al.  Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. , 2005, Biomacromolecules.

[25]  Lina Zhang,et al.  Effects of cellulose whiskers on properties of soy protein thermoplastics. , 2006, Macromolecular bioscience.

[26]  R. Dendievel,et al.  Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers , 1999 .

[27]  A. Dufresne,et al.  Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites , 2009 .

[28]  Kentaro Abe,et al.  Property enhancement of optically transparent bionanofiber composites by acetylation , 2006 .

[29]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[30]  A. Dufresne,et al.  Improvement of Starch Film Performances Using Cellulose Microfibrils , 1998 .

[31]  Xiaodong Cao,et al.  Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites , 2006 .

[32]  J. Putaux,et al.  The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. , 2008, Biomacromolecules.

[33]  Stephen J. Eichhorn,et al.  An estimation of the Young’s modulus of bacterial cellulose filaments , 2008 .

[34]  A. Dufresne,et al.  Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers , 2004 .

[35]  S. Eichhorn Cellulose nanowhiskers: promising materials for advanced applications , 2011 .

[36]  M. Deinema,et al.  Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation , 2004, Archiv für Mikrobiologie.

[37]  Kentaro Abe,et al.  Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. , 2007, Biomacromolecules.

[38]  Thomas Geiger,et al.  Cellulose Fibrils for Polymer Reinforcement , 2004 .

[39]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[40]  Takeshi Okano,et al.  Birefringent Glassy Phase of a Cellulose Microcrystal Suspension , 2000 .

[41]  Wen Bai,et al.  A technique for production of nanocrystalline cellulose with a narrow size distribution , 2009 .

[42]  J. Putaux,et al.  Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. , 2009 .

[43]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[44]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[45]  J. Araki,et al.  Influence of surface charge on viscosity behavior of cellulose microcrystal suspension , 1999, Journal of Wood Science.

[46]  P. Chang,et al.  Starch-based nanocomposites reinforced with flax cellulose nanocrystals , 2008 .

[47]  Hiroyuki Yano,et al.  Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure , 2005 .

[48]  N. Kotov,et al.  Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. , 2005, Biomacromolecules.

[49]  A. Dufresne,et al.  Polysaccharide Microcrystals Reinforced Amorphous Poly(β-hydroxyoctanoate) Nanocomposite Materials , 1999 .

[50]  M. Chang Crystallite structure of cellulose , 1974 .

[51]  L. Drzal,et al.  PREPARATION AND PROPERTIES OF MICROFIBRILLATED CELLULOSE POLYVINYL ALCOHOL COMPOSITE MATERIALS , 2008 .

[52]  C. Graillat,et al.  New waterborne epoxy coatings based on cellulose nanofillers , 2001 .

[53]  L. Berglund,et al.  Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils , 2008 .

[54]  O. Battista Hydrolysis and Crystallization of Cellulose , 1950 .

[55]  A. Dufresne,et al.  Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell , 2005 .

[56]  K. Oksman,et al.  Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites , 2009 .

[57]  K. Oksman,et al.  Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites , 2007 .

[58]  Youssef Habibi,et al.  Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. , 2008, Biomacromolecules.

[59]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[60]  J. Cavaillé,et al.  Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior , 2000 .

[61]  Lina Zhang,et al.  Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. , 2009, Biomacromolecules.

[62]  John Simonsen,et al.  Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. , 2006, Journal of nanoscience and nanotechnology.

[63]  S. P. Rowland,et al.  The nature of accessible surfaces in the microstructure of cotton cellulose , 1972 .

[64]  A. Dufresne,et al.  High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado) , 2010 .

[65]  J. Cavaillé,et al.  Mechanical behaviour above Tg of a plasticised PVC reinforced with cellulose whiskers; a SANS structural study , 1999 .

[66]  John Simonsen,et al.  Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes , 2008 .

[67]  L. Heath,et al.  Cellulose nanowhisker aerogels , 2010 .

[68]  A. Dufresne,et al.  Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites , 2010 .

[69]  A. Kai THE FINE STRUCTURE OF VALONIA MICROFIBRIL GEL PERMIATION CHROMATOGRAPHIC STUDIES OF VALONIA CELLULOSE , 1976 .

[70]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[71]  Lihui Weng,et al.  Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. , 2005, Macromolecular bioscience.

[72]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[73]  T. Kondo,et al.  Periodate oxidation of crystalline cellulose. , 2000, Biomacromolecules.

[74]  M. Vignon,et al.  Parenchymal cell cellulose from sugar beet pulp: preparation and properties , 1996 .

[75]  C. Napoli,et al.  Production of cellulose microfibrils by Rhizobium. , 1975, Applied microbiology.

[76]  Paul Gatenholm,et al.  Bacterial Nanocellulose as a Renewable Material for Biomedical Applications , 2010 .

[77]  A. Dufresne,et al.  Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites , 2004 .

[78]  Minoru Fujita,et al.  Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan , 1998 .

[79]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[80]  A. Dufresne,et al.  Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites , 2008 .

[81]  N. Ausmees,et al.  Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. , 1999, Microbiology.

[82]  A. Dufresne,et al.  POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers , 2005 .

[83]  P. Dubois,et al.  Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization , 2008 .

[84]  A. Sharples The hydrolysis of cellulose and its relation to structure. Part 2 , 1958 .

[85]  Y. Habibi,et al.  Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization. , 2007, Journal of colloid and interface science.

[86]  L. Berglund,et al.  Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde , 2007 .

[87]  Xiaodong Cao,et al.  One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites , 2009 .

[88]  P. Claesson,et al.  Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[89]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[90]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis , 2000 .

[91]  H. Sehaqui,et al.  Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions , 2010 .

[92]  A. Dufresne,et al.  Physico-Chemical Characterization of Palm from Phoenix Dactylifera-L, Preparation of Cellulose Whiskers and Natural Rubber-Based Nanocomposites , 2009 .

[93]  Akira Isogai,et al.  Wet Strength Improvement of TEMPO-Oxidized Cellulose Sheets Prepared with Cationic Polymers , 2007 .

[94]  Hiroyuki Yano,et al.  The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites , 2004 .

[95]  A. Dufresne,et al.  Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension , 2004 .

[96]  Mark Stumborg,et al.  Green composites reinforced with hemp nanocrystals in plasticized starch , 2008 .

[97]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[98]  R. Brown,et al.  Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? , 2001, Plant physiology.

[99]  A. Dufresne Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites , 2000 .

[100]  Richard A. Venditti,et al.  A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods , 2011 .

[101]  A. Dufresne,et al.  Nanocellulose-Based Composites , 2011 .

[102]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior , 2001 .

[103]  S. Eichhorn,et al.  Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy , 2008 .

[104]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[105]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[106]  J. Revol On the cross-sectional shape of cellulose crystallites in Valonia ventricosa , 1982 .

[107]  A. Dufresne,et al.  Shear-Induced Orientation Phenomena in Suspensions of Cellulose Microcrystals, Revealed by Small Angle X-ray Scattering , 1999 .

[108]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[109]  R. Malcolm Brown,et al.  Cellulose structure and biosynthesis: What is in store for the 21st century? , 2004 .

[110]  F. Morehead,et al.  Level-Off Degree of Polymerization , 1956 .

[111]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[112]  Masamichi Kobayashi,et al.  THEORETICAL EVALUATION OF THREE-DIMENSIONAL ELASTIC CONSTANTS OF NATIVE AND REGENERATED CELLULOSES : ROLE OF HYDROGEN BONDS , 1991 .

[113]  K. Oksman,et al.  Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol , 2007 .

[114]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[115]  P. Dubois,et al.  Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties , 2011 .

[116]  P. Ahlgren,et al.  Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material , 2005 .

[117]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[118]  T. Lindström,et al.  Aerogels from nanofibrillated cellulose with tunable oleophobicity , 2010 .

[119]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[120]  Alain Dufresne,et al.  Cellulose nanocrystals reinforced poly(oxyethylene) , 2004 .

[121]  H. Yano,et al.  Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites , 2005 .

[122]  A. Matthysse,et al.  Genes required for cellulose synthesis in Agrobacterium tumefaciens , 1995, Journal of bacteriology.

[123]  D. Gray,et al.  Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy , 1992 .

[124]  L. Berglund,et al.  Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. , 2010, Nature nanotechnology.