Hybrid functions of Bernstein polynomials and block-pulse functions for solving optimal control of the nonlinear Volterra integral equations

Abstract The main purpose of this paper is to approximate the solution of the optimal control problem for systems governed by a class of nonlinear Volterra integral equations. In order to do this, we use combination of Bernstein polynomials (BPs) and block-pulse functions (BPFs) on the interval [ 0 , 1 ) for converting this problem to an optimization problem that can be solved easily by mathematical programming techniques. Also, the convergence of the proposed method is discussed. Furthermore, in order to show the accuracy and reliability of the proposed method, the new approach is applied to some practical problems.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  C. Corduneanu,et al.  Integral equations and applications , 1991 .

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  R. Bellman,et al.  Polynomial approximation—a new computational technique in dynamic programming: Allocation processes , 1963 .

[5]  M. Peyghami,et al.  Some Explicit Class of Hybrid Methods for Optimal Control of Volterra Integral Equations , 2012 .

[6]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[7]  W. Shienyu Convergence of block pulse series approximation solution for optimal control problem , 1990 .

[8]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[9]  K. Maleknejad,et al.  The use of rationalized Haar wavelet collocation method for solving optimal control of Volterra integral equations , 2015 .

[10]  S. Effati,et al.  An approach for solving nonlinear programming problems , 2002 .

[11]  R. Bellman,et al.  FUNCTIONAL APPROXIMATIONS AND DYNAMIC PROGRAMMING , 1959 .

[12]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[13]  Hussein Jaddu,et al.  Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials , 2002, J. Frankl. Inst..

[14]  M. Hadizadeh,et al.  A new computational method for Volterra-Fredholm integral equations , 1999 .

[15]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[16]  Walter Murray,et al.  Sequential Quadratic Programming Methods for Large-Scale Problems , 1997, Comput. Optim. Appl..

[17]  Emran Tohidi,et al.  Optimal control of nonlinear Volterra integral equations via Legendre polynomials , 2013, IMA J. Math. Control. Inf..

[18]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[19]  Gancho Tachev,et al.  POINTWISE APPROXIMATION BY BERNSTEIN POLYNOMIALS , 2012, Bulletin of the Australian Mathematical Society.

[20]  Khosrow Maleknejad,et al.  A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation , 2011 .

[21]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[22]  V. Vinokurov,et al.  Optimal Control of Processes Described by Integral Equations, III , 1969 .

[23]  Ali Vahidian Kamyad,et al.  A different approach for solving the nonlinear Fredholm integral equations of the second kind , 2006, Appl. Math. Comput..

[24]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[25]  Philip E. Gill,et al.  Practical optimization , 1981 .

[26]  R. Bellman Dynamic programming. , 1957, Science.

[27]  D. Baleanu,et al.  Hybrid Bernstein Block-Pulse Functions Method for Second Kind Integral Equations with Convergence Analysis , 2014 .

[28]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[29]  O. S. Fard,et al.  An iterative scheme for optimal control of linear Volterra integral equations , 2010 .

[30]  T. Angell On the optimal control of systems governed by nonlinear volterra equations , 1976 .

[31]  Yadollah Ordokhani,et al.  Application of the Bernstein Polynomials for Solving the Nonlinear Fredholm Integro-Differential Equations , 2011 .