Comparing Families of Dynamic Causal Models

Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data.

[1]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[2]  Karl J. Friston,et al.  Forward and backward connections in the brain: A DCM study of functional asymmetries , 2009, NeuroImage.

[3]  David J. C. MacKay,et al.  BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .

[4]  Karl J. Friston Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging , 2009, PLoS biology.

[5]  William D. Penny,et al.  Variational Bayes for Generalized , 2002 .

[6]  Karl J. Friston,et al.  A Metropolis–Hastings algorithm for dynamic causal models , 2007, NeuroImage.

[7]  C. Summerfield,et al.  A Neural Representation of Prior Information during Perceptual Inference , 2008, Neuron.

[8]  Mriganka Sur,et al.  Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning-curve analysis. , 2010, Journal of neurophysiology.

[9]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[10]  Karl J. Friston,et al.  Dynamic causal modelling of distributed electromagnetic responses , 2009, NeuroImage.

[11]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[12]  William H. Press,et al.  Numerical recipes in C , 2002 .

[13]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[14]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[15]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[16]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[17]  Karl J. Friston,et al.  Variational Bayesian inference for fMRI time series , 2003, NeuroImage.

[18]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[19]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[20]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[21]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[22]  Elizabeth Jefferies,et al.  Semantic Processing in the Anterior Temporal Lobes: A Meta-analysis of the Functional Neuroimaging Literature , 2010, Journal of Cognitive Neuroscience.

[23]  Karl J. Friston,et al.  Bayesian Estimation of Dynamical Systems: An Application to fMRI , 2002, NeuroImage.

[24]  Mark A. Girolami,et al.  Bayesian inference for differential equations , 2008, Theor. Comput. Sci..

[25]  Karl J. Friston,et al.  The Cortical Dynamics of Intelligible Speech , 2008, The Journal of Neuroscience.

[26]  D. C. Howell Statistical Methods for Psychology , 1987 .

[27]  William D. Penny,et al.  Bayesian model selection and averaging , 2007 .

[28]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[29]  J. Tenenbaum,et al.  Bayesian Special Section Learning Overhypotheses with Hierarchical Bayesian Models , 2022 .

[30]  Matthew J. Beal,et al.  The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures , 2003 .

[31]  William D. Penny,et al.  Variational Bayes for generalized autoregressive models , 2002, IEEE Trans. Signal Process..

[32]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[33]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[34]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[35]  Karl J. Friston,et al.  Interhemispheric Integration of Visual Processing during Task-Driven Lateralization , 2007, The Journal of Neuroscience.

[36]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[37]  Nelson J. Trujillo-Barreto,et al.  Bayesian model averaging in EEG/MEG imaging , 2004, NeuroImage.

[38]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[39]  M. Clyde,et al.  Multiple shrinkage and subset selection in wavelets , 1998 .

[40]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[41]  Mark W. Greenlee,et al.  Connectivity modulation of early visual processing areas during covert and overt tracking tasks , 2008, NeuroImage.

[42]  S. Roberts,et al.  Bayesian multivariate autoregressive models with structured priors , 2002 .

[43]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.