Uncovering interpretable relationships in high-dimensional scientific data through function preserving projections

[1]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[2]  Paul T. Springer,et al.  Integrated thermodynamic model for ignition target performance , 2013 .

[3]  Luis Gustavo Nonato,et al.  Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment , 2019, IEEE Transactions on Visualization and Computer Graphics.

[4]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[5]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[6]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[7]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[8]  Valerio Pascucci,et al.  Distortion‐Guided Structure‐Driven Interactive Exploration of High‐Dimensional Data , 2014, Comput. Graph. Forum.

[9]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[10]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[11]  Andreas Kerren,et al.  t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections , 2020, IEEE Transactions on Visualization and Computer Graphics.

[12]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[14]  Andreas Kerren,et al.  Toward a Quantitative Survey of Dimension Reduction Techniques , 2019, IEEE Transactions on Visualization and Computer Graphics.

[15]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .