A Compact and Low-Power Fractionally Injection-Locked Quadrature Frequency Synthesizer Using a Self-Synchronized Gating Injection Technique for Software-Defined Radios

This paper describes a compact and low-power frequency synthesizer with quadrature phase output for software-defined radios (SDRs). The proposed synthesizer is constructed using a core phase-locked loop (PLL), which is coupled with a fractional-N injection-locked frequency divider (ILFD). The fractional-N injection-locking operation is achieved by the proposed self-synchronized gating injection technique. The principle of a fractional-N injection locking operation and the concept of the proposed circuits are described in detail. Analysis for predicting the locking range of the proposed fractional-N ILFD is investigated. A digital calibration scheme is adopted in order to compensate for process, voltage, and temperature (PVT) variations. Implemented in a 65 nm CMOS process, this work demonstrates continuous frequency coverage from 10 MHz to 6.6 GHz with quadrature phase output while occupying a small area of 0.38 mm2 and consuming 16 to 26 mW, depending on the output frequency. The normalized phase noise achieves -135.3 dBc/Hz at an offset of 3 MHz and -95.1 dBc/Hz at an offset of 10 kHz, both from a carrier frequency of 1.7 GHz.

[1]  Mikko Kaltiokallio,et al.  Wideband 2 to 6 GHz RF Front-End With Blocker Filtering , 2012, IEEE Journal of Solid-State Circuits.

[2]  Peter R. Kinget,et al.  A Single-Chip 125-MHz to 32-GHz Signal Source in 0.18-$\mu$m SiGe BiCMOS , 2011, IEEE Journal of Solid-State Circuits.

[3]  Pietro Andreani,et al.  Highly Efficient Class-C CMOS VCOs, Including a Comparison With Class-B VCOs , 2013, IEEE Journal of Solid-State Circuits.

[4]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[5]  Kenichi Okada,et al.  A Compact, Low-Power and Low-Jitter Dual-Loop Injection Locked PLL Using All-Digital PVT Calibration , 2014, IEEE Journal of Solid-State Circuits.

[6]  Ahmad Mirzaei,et al.  Highly Integrated and Tunable RF Front Ends for Reconfigurable Multiband Transceivers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Behzad Razavi,et al.  Cognitive Radio Design Challenges and Techniques , 2010, IEEE Journal of Solid-State Circuits.

[8]  Howard C. Luong,et al.  A 0.05-to-10GHz 19-to-22GHz and 38-to-44GHz SDR frequency synthesizer in 0.13μm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[9]  Jonathan Borremans,et al.  6 A 40 nm CMOS Highly Linear 0 . 4to-6 GHz Receiver Resilient to 0 dBm Out-of-Band Blockers , 2011 .

[10]  Ahmad Mirzaei,et al.  A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications , 2012, IEEE Journal of Solid-State Circuits.

[11]  Kenichi Okada,et al.  A Sub-Harmonic Injection-Locked Quadrature Frequency Synthesizer With Frequency Calibration Scheme for Millimeter-Wave TDD Transceivers , 2013, IEEE Journal of Solid-State Circuits.

[12]  Kenichi Okada,et al.  A 0.38 mm2, 10mhz-6.6 GHz quadrature frequency synthesizer using fractional-N injection-locked technique , 2012, 2012 IEEE Asian Solid State Circuits Conference (A-SSCC).

[13]  Andrea Baschirotto,et al.  A Fully Reconfigurable Software-Defined Radio Transceiver in 0.13μm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[14]  M.J. Declercq,et al.  A GSM-GPRS/UMTS FDD-TDD/WLAN 802.11a-b-g multi-standard carrier generation system , 2006, IEEE Journal of Solid-State Circuits.

[15]  C.S. Vaucher,et al.  A family of low-power truly modular programmable dividers in standard 0.35-/spl mu/m CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[16]  A. Mazzanti,et al.  Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise , 2008, IEEE Journal of Solid-State Circuits.

[17]  Kenichi Okada,et al.  A 0.022mm2 970µW dual-loop injection-locked PLL with −243dB FOM using synthesizable all-digital PVT calibration circuits , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[18]  Jonathan Borremans,et al.  A 5 mm$^{2}$ 40 nm LP CMOS Transceiver for a Software-Defined Radio Platform , 2010, IEEE Journal of Solid-State Circuits.

[19]  Kenichi Okada,et al.  10MHz to 7GHz quadrature signal generation using a divide-by-4/3, -3/2, -5/3, -2, -5/2, -3, -4, and -5 injection-locked frequency divider , 2010, 2010 Symposium on VLSI Circuits.

[20]  Christoph Scheytt,et al.  An Integrated 0.6–4.6 GHz, 5–7 GHz, 10–14 GHz, and 20–28 GHz Frequency Synthesizer for Software-Defined Radio Applications , 2009, IEEE Journal of Solid-State Circuits.

[21]  Wei Li,et al.  A Frequency Synthesizer With Optimally Coupled QVCO and Harmonic-Rejection SSBmixer for Multi-Standard Wireless Receiver , 2011, IEEE Journal of Solid-State Circuits.

[22]  Kenichi Okada,et al.  Class-C VCO With Amplitude Feedback Loop for Robust Start-Up and Enhanced Oscillation Swing , 2013, IEEE Journal of Solid-State Circuits.

[23]  Jri Lee A 3-to-8-GHz fast-hopping frequency synthesizer in 0.18-/spl mu/m CMOS technology , 2006 .

[24]  Zhiwei Xu,et al.  A Low Phase Noise, Wideband and Compact CMOS PLL for Use in a Heterodyne 802.15.3c Transceiver , 2011, IEEE Journal of Solid-State Circuits.

[25]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.

[26]  Jonathan Borremans,et al.  A 86 MHz–12 GHz Digital-Intensive PLL for Software-Defined Radios, Using a 6 fJ/Step TDC in 40 nm Digital CMOS , 2010, IEEE Journal of Solid-State Circuits.

[27]  Michiel Steyaert,et al.  A 0.1-5GHz dual-VCO software-defined sigma delta frequency synthesizer in 45nm digital CMOS , 2009, RFIC 2009.

[28]  Pierluigi Nuzzo,et al.  A 2-mm$^{2}$ 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS , 2009, IEEE Journal of Solid-State Circuits.