Advances in Space Traveling-Wave Tubes for NASA Missions

Significant advances in the performance and reliability of traveling-wave tubes (TWTs) utilized in amplifying space communication signals for NASA missions have been achieved over the last three decades through collaborative efforts between NASA and primarily L-3 Communications Electron Technologies, Inc. (L-3 ETI). This paper summarizes some of the key milestones during this period and includes development of TWTs for the Communications Technology Satellite, Cassini, and Lunar Reconnaissance Orbiter missions. Technical advances in computer modeling, design techniques, materials, and fabrication have enabled power efficiency to increase by almost 40% and the output power/mass figure-of-merit to increase by an order of magnitude during this period.

[1]  W. Muller Computational modeling of dispenser cathode emission properties , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[2]  J. D. Wilson,et al.  Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube , 1995 .

[3]  J. A. Dayton,et al.  Three-dimensional modeling of multistage depressed collectors , 1999 .

[4]  Carol L. Kory,et al.  Computer Analysis of Spectrum Anomaly in 32-GHz Traveling-Wave Tube for Cassini Mission , 1999 .

[5]  W.L. Menninger,et al.  Power Flexible Ka-band Traveling Wave Tube Amplifiers of Up to 250-W RF for Space Communications , 2007, IEEE Transactions on Electron Devices.

[6]  A.V. Haeff,et al.  A Wide-Band Inductive-Output Amplifier , 1940, Proceedings of the IRE.

[7]  J. A. Dayton,et al.  Accurate cold-test model of helical TWT slow-wave circuits , 1998 .

[8]  Müller,et al.  Geometry and unoccupied electronic states of Ba and BaO on W(001). , 1994, Physical review. B, Condensed matter.

[9]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[10]  Wolfgan Müller,et al.  Work functions for models of scandate surfaces , 1997 .

[11]  T. Antonsen,et al.  A three-dimensional multifrequency large signal model for helix traveling wave tubes , 2001 .

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  W. Neugebauer,et al.  Analytic study of a depressed collector for linear beam microwave amplifiers Final report , 1970 .

[14]  R.N. Simons,et al.  Waveguide power combiner demonstration for multiple high power millimeter wave TWTAs , 2004, Fifth IEEE International Vacuum Electronics Conference (IEEE Cat. No.04EX786).

[15]  J. C. Peterson,et al.  A TWT amplifier with a linear power transfer characteristic and improved efficiency , 1984 .

[16]  A. Curren,et al.  Carbon and carbon-coated electrodes for multistage depressed collectors for electron-beam devices—A technology review , 1986, IEEE Transactions on Electron Devices.

[17]  L. Kory,et al.  INVESTIGATIONS USING A 3 D TIME-DEPENDENT TRAVELING WAVE TUBE MODEL , 2022 .

[18]  J.D. Wilson,et al.  Robust Optimization of High-Frequency Traveling-Wave Tube Slow-Wave Circuits , 2007, IEEE Transactions on Electron Devices.

[19]  P. Ramins,et al.  Improvements in MDC and TWT overall efficiency through the application of carbon electrode surfaces , 1986, IEEE Transactions on Electron Devices.

[20]  R. T. Longo,et al.  Physics of thermionic dispenser cathode aging , 2003 .

[21]  Segall,et al.  Unoccupied electronic resonances of Sc adsorbed on W(001) by k-resolved inverse photoemission. , 1995, Physical review. B, Condensed matter.

[22]  J. D. Wilson Design of high-efficiency wide-bandwidth coupled-cavity traveling-wave tube phase velocity tapers with simulated annealing algorithms , 2001 .

[23]  C. K. Chong,et al.  First pass TWT design success , 2000, Abstracts. International Vacuum Electronics Conference 2000 (Cat. No.00EX392).

[24]  E.W. McCune A UHF-TV klystron using multistage depressed collector technology , 1986, 1986 International Electron Devices Meeting.

[25]  R. Kompfner,et al.  The Traveling-Wave Tube as Amplifier at Microwaves , 1947, Proceedings of the IRE.

[26]  J. D. Wilson Computationally generated velocity taper for efficiency enhancement in a coupled-cavity traveling-wave tube , 1989 .

[27]  T. G. Mihran,et al.  Analytical designs of a space-borne magnetically-focused klystron amplifier Final report , 1968 .

[28]  D.A. Dunn,et al.  A crossed-field multisegment depressed collector for beam-type tubes , 1960, IRE Transactions on Electron Devices.

[29]  Luciano Iess,et al.  Cassini Radio Science , 2004 .

[30]  Carol L. Kory,et al.  Simulation of TunneLadder traveling-wave tube cold-test characteristics: Implementation of the three-dimensional, electromagnetic circuit analysis code micro-SOS , 1993 .

[31]  J. A. Dayton,et al.  Effect of helical slow-wave circuit variations on TWT cold-test characteristics , 1998 .

[32]  D. Marino,et al.  Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes , 1986 .

[33]  Ralph Forman,et al.  A proposed physical model for the impregnated tungsten cathode based on Auger surface studies of the Ba-O-W system , 1979 .

[34]  Carol L. Kory,et al.  Generalized three-dimensional simulation of ferruled coupled-cavity traveling-wave-tube dispersion and impedance characteristics , 1993 .

[35]  C. L. Kory Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA , 1996 .

[36]  L. Dombro,et al.  High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector , 1987, 1987 International Electron Devices Meeting.

[37]  Carol L. Kory Effect of geometric azimuthal asymmetries of PPM stack on electron beam characteristics [TWTs] , 2001 .

[38]  J. D. Wilson,et al.  Novel high-gain, improved-bandwidth, finned-ladder V-band traveling-wave tube slow-wave circuit design , 1995 .

[39]  D. J. Connolly,et al.  A contribution to computer analysis of coupled-cavity traveling wave tubes , 1977, IEEE Transactions on Electron Devices.

[40]  F. Sterzer Improvement of traveling-wave tube efficiency through collector potential depression , 1958, IRE Transactions on Electron Devices.

[41]  P. Ramins,et al.  Performance of textured carbon on copper electrode multistage depressed collectors with medium-power traveling wave tubes , 1986 .

[42]  W. Muller,et al.  Electronic structure of BaO/W cathode surfaces , 1989 .

[43]  J. D. Wilson,et al.  A high-efficiency ferruleless coupled-cavity traveling-wave tube with phase-adjusted taper , 1990 .

[44]  J. A. Dayton,et al.  The Cassini mission Ka-band TWT , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[45]  Edwin G. Wintucky,et al.  Miniature reservoir cathode: an update , 2003 .

[46]  Robert F. Roman,et al.  An effective secondary electron emission suppression treatment for copper MDC electrodes , 1993, Proceedings of IEEE International Electron Devices Meeting.

[47]  C. K. Chong,et al.  First pass TWT design success , 2001 .

[48]  J. Askne Calculation of CoupIed-Cavity TWT Performance , 1975 .

[49]  A. S. Gilmour Principles of Traveling Wave Tubes , 1994 .

[50]  N. Stankiewicz,et al.  Analytical prediction and experimental verification of TWT and depressed collector performance using multidimensional computer programs , 1979, IEEE Transactions on Electron Devices.

[51]  W. Neugebauer,et al.  Multistage depressed electrostatic collector for magnetically focused space borne klystrons Final report , 1970 .

[52]  D. J. Connolly,et al.  Computer program for analysis of coupled-cavity traveling wave tubes , 1977 .

[53]  Ralph Forman,et al.  Surface studies on the low work function surface complex of barium on an osmium-ruthenium substrate , 1987 .

[54]  H. G. Kosmahl,et al.  A 240-W 12-GHz space communication TWT with 56 percent overall and 81 percent collector efficiency , 1973 .

[55]  M. Feinleit,et al.  High current density cathodes - An update , 1984, 1984 International Electron Devices Meeting.

[56]  Jeffrey D. Wilson Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes , 1987 .

[57]  N.R. Robbins,et al.  Performance and reliability advances in TWTA high power amplifiers for communications satellites , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[58]  H. G. Kosmahl A novel, axisymmetric, electrostatic collector for linear beam microwave tubes , 1971 .

[59]  K. R. Vaden,et al.  Computer aided design of Ka-band waveguide power combining architectures for interplanetary spacecraft , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[60]  B. Levush,et al.  Recent developments to the MICHELLE 2-D/3-D electron gun and collector modeling code , 2005, IEEE Transactions on Electron Devices.

[61]  H. Sobol,et al.  Milestones of microwaves , 2002 .

[62]  A. N. Curren,et al.  The angular distribution of elastically scattered electrons and computed impact on collector performance , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[63]  Virginia Parker Dawson Engines and Innovation: Lewis Laboratory and American Propulsion Technology. NASA SP-4306 , 1991 .

[64]  J. D. Wilson A simulated annealing algorithm for optimizing RF power efficiency in coupled-cavity traveling-wave tubes , 1997 .

[65]  J.R.M. Vaughan,et al.  Calculation of coupled-cavity TWT performance , 1975, IEEE Transactions on Electron Devices.

[66]  C. L. Jones A 200 watt traveling wave-tube for the communications technology satellite , 1976 .

[67]  Luciano Iess,et al.  Stochastic Gravitational Wave Background: Upper Limits in the 10–6 to 10–3 Hz Band , 2003 .

[68]  R.N. Simons,et al.  High Power Combining of Ka-Band TWTs for Deep Space Communications , 2006, 2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources.

[69]  R. Strauss,et al.  Traveling wave tubes for communication satellites , 1977, Proceedings of the IEEE.

[70]  T. Okoshi,et al.  The tilted electric field soft-landing collector and its application to a traveling-wave tube , 1972 .

[71]  B.J. Mangus,et al.  TWTA versus SSPA; a comparison of on-orbit reliability data , 2005, Fifth IEEE International Vacuum Electronics Conference (IEEE Cat. No.04EX786).