Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates

Flexible perovskite solar cells with power conversion efficiencies of up to 10.3% have been prepared using titanium foil as an electrode substrate. Our method uses an indium-free transparent counter electrode which allows device performance to remain high despite repeated bending, making it suitable for roll-to-roll processing.

[1]  Alex K.-Y. Jen,et al.  Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments , 2014 .

[2]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[3]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[4]  Mohammad Khaja Nazeeruddin,et al.  High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. , 2006, Chemical communications.

[5]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[6]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[7]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[8]  Teng Zhang,et al.  Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites , 2014 .

[9]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[10]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[11]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[12]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[13]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[14]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[15]  Zhibin Yang,et al.  Integrating perovskite solar cells into a flexible fiber. , 2014, Angewandte Chemie.

[16]  A. Belcher,et al.  Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries , 2014 .

[17]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[18]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[19]  Matthew J. Carnie,et al.  Performance enhancement of solution processed perovskite solar cells incorporating functionalized silica nanoparticles , 2014 .

[20]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[21]  Photocatalytic Oxidation of Triiodide in UVA-Exposed Dye-Sensitized Solar Cells , 2012 .

[22]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[23]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[24]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[25]  Assaf Y Anderson,et al.  Interpretation of Optoelectronic Transient and Charge Extraction Measurements in Dye‐Sensitized Solar Cells , 2013, Advanced materials.

[26]  J. Bloking,et al.  Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. , 2012, ACS nano.