Pseudospectral reduction of incompressible two-dimensional turbulence

Abstract Spectral reduction was originally formulated entirely in the wavenumber domain as a coarse-grained wavenumber convolution in which bins of modes interact with enhanced coupling coefficients. A Liouville theorem leads to inviscid equipartition solutions when each bin contains the same number of modes. A pseudospectral implementation of spectral reduction which enjoys the efficiency of the fast Fourier transform is described. The model compares well with full pseudospectral simulations of the two-dimensional forced-dissipative energy and enstrophy cascades.

[1]  S. Orszag Analytical theories of turbulence , 1970, Journal of Fluid Mechanics.

[2]  George F. Carnevale,et al.  H theorems in statistical fluid dynamics , 1981 .

[3]  B. A. Shadwick,et al.  Spectral Reduction: A Statistical Description of Turbulence , 1999, chao-dyn/9903008.

[4]  Jackson,et al.  Constrained Euler system for Navier-Stokes turbulence. , 1993, Physical review letters.

[5]  E. Lorenz Low order models representing realizations of turbulence , 1972, Journal of Fluid Mechanics.

[6]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[7]  John C. Bowman,et al.  Efficient Dealiased Convolutions without Padding , 2011, SIAM J. Sci. Comput..

[8]  Steady-state simulation of 2D homogeneous turbulence , 1989 .

[9]  Evgenii A. Novikov,et al.  Functionals and the random-force method in turbulence theory , 1965 .

[10]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[11]  S. Orszag,et al.  Inviscid dynamics of two‐dimensional turbulence , 1973 .

[12]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[13]  M. Y. Hussaini,et al.  Theoretical Approaches to Turbulence , 1985 .

[14]  D. Lohse,et al.  Intermittency in the Navier-Stokes dynamics , 1992 .

[15]  P. Morrison,et al.  Numerical challenges for turbulence computation: statistical equipartition and the method of spectral reduction , 2001 .

[16]  M. Roberts Multispectral Reduction of Two-Dimensional Turbulence , 2011 .

[17]  T. Lee On some statistical properties of hydrodynamical and magneto-hydrodynamical fields , 1952 .

[18]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[19]  R. Kraichnan,et al.  Is there a statistical mechanics of turbulence , 1988 .