Implicit contact dynamics and Hamilton-Jacobi theory

In this paper we propose a Hamilton-Jacobi theory for implicit contact Hamiltonian systems in two different ways. One is the understanding of implicit contact Hamiltonian dynamics as a Legendrian submanifold of the tangent contact space, and another is as a Lagrangian submanifold of a certain symplectic space embedded into the tangent contact space. In these two scenarios we propose a Hamilton-Jacobi theory specifically derived with the aid of Herglotz Lagrangian dynamics generated by non-regular Lagrangian functions. MSC2020 classification: 37J55; 53D10; 70H20.

[1]  A. Simoes,et al.  Contact geometry for simple thermodynamical systems with friction , 2020, Proceedings of the Royal Society A.

[2]  W. Tulczyjew,et al.  Integrability of implicit differential equations , 1995 .

[4]  M. Muñoz-Lecanda,et al.  New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries , 2019, 1907.02947.

[5]  Miroslav Grmela,et al.  Contact Geometry of Mesoscopic Thermodynamics and Dynamics , 2014, Entropy.

[6]  G. Marmo,et al.  Constrained Hamiltonian systems as implicit differential equations , 1997 .

[7]  Manuel Lainz Valc'azar,et al.  The Geometry of Some Thermodynamic Systems , 2020, SPIGL.

[9]  O. Esen,et al.  A Hamilton–Jacobi formalism for higher order implicit Lagrangians , 2019, Journal of Physics A: Mathematical and Theoretical.

[10]  B. Lawruk,et al.  Special symplectic spaces , 1975 .

[11]  Manuel Lainz Valc'azar,et al.  Contact Hamiltonian systems , 2018, Journal of Mathematical Physics.

[12]  R. Bains,et al.  Methods of differential geometry in analytical mechanics , 1992 .

[13]  Alessandro Bravetti,et al.  Contact Hamiltonian Dynamics: The Concept and Its Use , 2017, Entropy.

[14]  M. de León,et al.  The Hamilton–Jacobi Theory for Contact Hamiltonian Systems , 2021, Mathematics.

[15]  Juan Carlos Marrero,et al.  Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic Mechanics , 2008, 0801.4358.

[16]  Kai Cieliebak,et al.  Symplectic Geometry , 1992, New Spaces in Physics.

[17]  M. de León,et al.  Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems , 2016, 1612.06224.

[18]  J. Sniatycki,et al.  Generating Forms of Lagrangian Submanifolds , 1972 .

[19]  M. D. Le'on,et al.  A Hamilton-Jacobi theory for implicit differential systems , 2017, 1708.01586.

[20]  M. Grmela,et al.  Multiscale Thermo-Dynamics , 2018 .

[21]  A. Bravetti,et al.  Contact Hamiltonian Mechanics , 2016, 1604.08266.

[22]  Geometric Hamilton-Jacobi theory , 2006, math-ph/0604063.

[23]  Peter Salamon,et al.  Contact structure in thermodynamic theory , 1991 .

[24]  G. Marmo,et al.  Symmetries and constants of the motion for dynamics in implicit form , 1992 .

[25]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[26]  Andrew James Bruce,et al.  Remarks on contact and Jacobi geometry , 2015, 1507.05405.

[27]  矢野 健太郎,et al.  Tangent and cotangent bundles : differential geometry , 1973 .

[28]  S. Benenti Hamiltonian Structures and Generating Families , 2011 .

[29]  Miroslav Grmela Multiscale Thermodynamics , 2021, Entropy.

[30]  A. Bravetti Contact geometry and thermodynamics , 2019, International Journal of Geometric Methods in Modern Physics.

[31]  D. D. Diego,et al.  Co-isotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms , 1997 .