Efficient FEM calculation with predefined precision through automatic grid refinement
暂无分享,去创建一个
Alain Combescure | Anthony Gravouil | Antonius Lubrecht | Pauline Cavin | A. Combescure | A. Lubrecht | A. Gravouil | P. Cavin
[1] A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems , 1973 .
[2] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[3] I. D. Parsons,et al. A parallel multigrid method for history-dependent elastoplasticity computations , 1993 .
[4] Robert L. Taylor,et al. Parallel multigrid solvers for 3D-unstructured large deformation elasticity and plasticity finite element problems , 2000 .
[5] Mark F. Adams,et al. Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics , 2000 .
[6] O. C. Zienkiewicz,et al. Adaptive mesh generation for fluid mechanics problems , 2000 .
[7] Eitan Grinspun,et al. Natural hierarchical refinement for finite element methods , 2003 .
[8] Alain Combescure,et al. Multi‐time‐step and two‐scale domain decomposition method for non‐linear structural dynamics , 2003 .
[9] J. Fish. The s-version of the finite element method , 1992 .
[10] Weizhang Huang,et al. A two-dimensional moving finite element method with local refinement based on a posteriori error estimates , 2003 .
[11] I. Babuska,et al. The design and analysis of the Generalized Finite Element Method , 2000 .
[12] J. Z. Zhu,et al. The finite element method , 1977 .
[13] J. Tinsley Oden,et al. Practical methods for a posteriori error estimation in engineering applications , 2003 .
[14] Jin-U Park,et al. Efficient finite element analysis using mesh superposition technique , 2003 .
[15] Mark F. Adams,et al. Parallel multigrid solvers for 3D unstructured finite element problems in large deformation elasticity and plasticity , 2000 .