Discrete Polymatroids

The discrete polymatroid is a multiset analogue of the matroid. Based on the polyhedral theory on integral polymatroids developed in late 1960’s and in early 1970’s, in the present paper the combinatorics and algebra on discrete polymatroids will be studied.

[1]  Edward L. Green,et al.  δ-Koszul Algebras , 2005 .

[2]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[3]  日比 孝之,et al.  Algebraic combinatorics on convex polytopes , 1992 .

[4]  Neil White,et al.  The basis monomial ring of a matroid , 1977 .

[5]  Takayuki Hibi,et al.  Ideals of fiber type and polymatroids , 2005 .

[6]  Kazuo Murota,et al.  Convexity and Steinitz's Exchange Property , 1996, IPCO.

[7]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[8]  Yukihide Takayama,et al.  Resolutions by mapping cones , 2001 .

[9]  Takayuki Hibi,et al.  Combinatorial pure subrings , 2000 .

[10]  James G. Oxley,et al.  Matroid theory , 1992 .

[11]  Neil White,et al.  A unique exchange property for bases , 1980 .

[12]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[13]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[14]  Takayuki Hibi,et al.  Gorenstein Algebras of Veronese Type , 1997 .

[15]  Takayuki Hibi,et al.  Discrete Polymatroids , 2002 .

[16]  J. Okninski,et al.  On monomial algebras , 1988, Semigroup Algebras.

[17]  Kazuo Murota,et al.  M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..

[18]  藤重 悟 Submodular functions and optimization , 1991 .

[19]  Takayuki Hibi,et al.  Compressed polytopes, initial ideals and complete multipartite graphs , 2000 .

[20]  Aldo Conca,et al.  Castelnuovo-Mumford regularity of products of ideals , 2002 .

[21]  Quadratic initial ideals of root systems , 2001 .