Matched direction detectors and estimators for array processing with subspace steering vector uncertainties

In this paper, we consider the problem of estimating and detecting a signal whose associated spatial signature is known to lie in a given linear subspace but whose coordinates in this subspace are otherwise unknown, in the presence of subspace interference and broad-band noise. This situation arises when, on one hand, there exist uncertainties about the steering vector but, on the other hand, some knowledge about the steering vector errors is available. First, we derive the maximum-likelihood estimator (MLE) for the problem and compute the corresponding Crame/spl acute/r-Rao bound. Next, the maximum-likelihood estimates are used to derive a generalized likelihood ratio test (GLRT). The GLRT is compared and contrasted with the standard matched subspace detectors. The performances of the estimators and detectors are illustrated by means of numerical simulations.

[1]  Olivier Besson,et al.  Performance analysis of beamformers using generalized loading of the covariance matrix in the presence of random steering vector errors , 2005, IEEE Transactions on Signal Processing.

[2]  Mukund Desai,et al.  Robust Gaussian and non-Gaussian matched subspace detection , 2003, IEEE Trans. Signal Process..

[3]  Mohamed-Slim Alouini,et al.  Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems , 2003, IEEE J. Sel. Areas Commun..

[4]  Louis L. Scharf,et al.  Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise , 2002, IEEE Trans. Signal Process..

[5]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[6]  Hagit Messer,et al.  Bearing estimation in a Ricean channel .I. Inherent accuracy limitations , 2001, IEEE Trans. Signal Process..

[7]  Brian M. Sadler,et al.  Bounds on bearing and symbol estimation with side information , 2001, IEEE Trans. Signal Process..

[8]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[9]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[10]  Björn E. Ottersten,et al.  The effects of local scattering on direction of arrival estimation with MUSIC , 1999, IEEE Trans. Signal Process..

[11]  B. C. Ng,et al.  On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.

[12]  Bjorn Ottersten,et al.  Generalised array manifold model for wireless communication channels with local scat-tering , 1998 .

[13]  B. Friedlander,et al.  Robust subspace detectors , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[14]  B. Friedlander,et al.  Comparison of signal estimation using calibrated and uncalibrated arrays , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[16]  Allan O. Steinhardt,et al.  Adaptive array detection of uncertain rank one waveforms , 1996, IEEE Trans. Signal Process..

[17]  D. McLaughlin,et al.  Performance of the GLRT for adaptive vector subspace detection , 1996 .

[18]  A. Swindlehurst,et al.  A maximum a posteriori approach to beamforming in the presence of calibration errors , 1996, Proceedings of 8th Workshop on Statistical Signal and Array Processing.

[19]  B. Friedlander,et al.  'Almost blind' signal estimation using second-order moments , 1995 .

[20]  Lloyd J. Griffiths,et al.  Steering vector estimation in uncalibrated arrays , 1995, IEEE Trans. Signal Process..

[21]  A. Lee Swindlehurst,et al.  A Bayesian approach to auto-calibration for parametric array signal processing , 1994, IEEE Trans. Signal Process..

[22]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[23]  Thomas L. Marzetta,et al.  A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..

[24]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[25]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[26]  L. Scharf,et al.  Geometry of the Cramer-Rao bound , 1992, [1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing.

[27]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[28]  Edward J Kelly Adaptive detection in non-stationary interference, part 3 , 1987 .