Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene

We report on the photovoltaic performance of bulk heterojunction solar cells using novel nanoparticles of 6-palmitate ascorbic acid surface modified TiO2 as an electron acceptor embedded into the donor poly(3-hexyl)thiophene (P3HT) matrix. Devices were fabricated by using P3HT with varying amounts of red TiO2 nanoparticles (1:1, 1:2, 1:3 w–w ratio). The devices were characterized by measuring current–voltage characteristics under simulated AM 1.5 conditions. Incident photon to current efficiency (IPCE) was spectrally resolved. The nanoscale morphology of such organic/inorganic hybrid blends was also investigated using atomic force microscopy (AFM).

[1]  Mingqing Wang,et al.  P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative , 2007 .

[2]  Mukundan Thelakkat,et al.  Highly Efficient Solid‐State Dye‐Sensitized TiO2 Solar Cells Using Donor‐Antenna Dyes Capable of Multistep Charge‐Transfer Cascades , 2007 .

[3]  Niyazi Serdar Sariciftci,et al.  Conjugated polymer photovoltaic devices and materials , 2006 .

[4]  Michael Grätzel,et al.  TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells , 2006 .

[5]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[6]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[7]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[8]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[9]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[10]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[11]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[12]  J.K.J. van Duren,et al.  In‐Situ Compositional and Structural Analysis of Plastic Solar Cells , 2002 .

[13]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[14]  Jean-Michel Nunzi,et al.  Organic photovoltaic materials and devices , 2002 .

[15]  Nasser N Peyghambarian,et al.  Fabrication of bulk heterojunction plastic solar cells by screen printing , 2001 .

[16]  Dieter Meissner,et al.  Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells , 2000 .

[17]  A. Alivisatos,et al.  CdSe Nanocrystal Rods/Poly(3‐hexylthiophene) Composite Photovoltaic Devices , 1999 .

[18]  J. Nedeljković,et al.  X-ray absorption reveals surface structure of titanium dioxide nanoparticles. , 1999, Journal of synchrotron radiation.

[19]  Oleg G. Poluektov,et al.  Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C , 1999 .

[20]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[21]  H. Weller Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules , 1993 .

[22]  Tijana Rajh,et al.  Reactions of hydrous titanium oxide colloids with strong oxidizing agents , 1992 .

[23]  R. Thompson Oxidation of peroxotitanium(IV) by chlorine and cerium(IV) in acidic perchlorate solution , 1984 .