Metric-aware processing of spherical imagery

Processing spherical images is challenging. Because no spherical parameterization is globally uniform, an accurate solver must account for the spatially varying metric. We present the first efficient metric-aware solver for Laplacian processing of spherical data. Our approach builds on the commonly used equirectangular parameterization, which provides differentiability, axial symmetry, and grid sampling. Crucially, axial symmetry lets us discretize the Laplacian operator just once per grid row. One difficulty is that anisotropy near the poles leads to a poorly conditioned system. Our solution is to construct an adapted hierarchy of finite elements, adjusted at the poles to maintain derivative continuity, and selectively coarsened to bound element anisotropy. The resulting elements are nested both within and across resolution levels. A streaming multigrid solver over this hierarchy achieves excellent convergence rate and scales to huge images. We demonstrate applications in reaction-diffusion texture synthesis and panorama stitching and sharpening.

[1]  Gyorgy Fekete,et al.  Rendering and managing spherical data with sphere quadtrees , 1990, VIS '90.

[2]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[3]  Peter Schröder,et al.  Spherical Wavelets: Texture Processing , 1995, Rendering Techniques.

[4]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[5]  Henning Biermann,et al.  Texture and Shape Synthesis on Surfaces , 2001, Rendering Techniques.

[6]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[7]  K. St A review of algebraic multigrid , 2001 .

[8]  Shmuel Peleg,et al.  Seamless Image Stitching in the Gradient Domain , 2004, ECCV.

[9]  Michael M. Kazhdan,et al.  Distributed gradient-domain processing of planar and spherical images , 2010, TOGS.

[10]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[11]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[12]  STEVE SCHAFFER,et al.  A Semicoarsening Multigrid Method for Elliptic Partial Differential Equations with Highly Discontinuous and Anisotropic Coefficients , 1998, SIAM J. Sci. Comput..

[13]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[14]  C. R. Hoffman,et al.  Illumination and Reflection Maps : Simulated Objects in Simulated and Real Environments Gene , 1984 .

[15]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[16]  Andrew Chi-Sing Leung,et al.  Isocube: Exploiting the Cubemap Hardware , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Andrew Chi-Sing Leung,et al.  The Rhombic Dodecahedron Map: An Efficient Scheme for Encoding Panoramic Video , 2009, IEEE Transactions on Multimedia.

[18]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[19]  Jörg Peters,et al.  A C2 polar jet subdivision , 2006, SGP '06.

[20]  Sylvain Lefebvre,et al.  Appearance-space texture synthesis , 2006, ACM Trans. Graph..

[21]  Michael M. Kazhdan,et al.  Streaming multigrid for gradient-domain operations on large images , 2008, ACM Trans. Graph..

[22]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[23]  Michael F. Cohen,et al.  Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems , 2008, ECCV.

[24]  David Salesin,et al.  Interactive digital photomontage , 2004, ACM Trans. Graph..