Low rank Tucker-type tensor approximation to classical potentials

AbstractThis paper investigates best rank-(r1,..., rd) Tucker tensor approximation of higher-order tensors arising from the discretization of linear operators and functions in ℝd. Super-convergence of the best rank-(r1,..., rd) Tucker-type decomposition with respect to the relative Frobenius norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical approximation is discussed. Tensor-product representation of basic multi-linear algebra operations is considered, including inner, outer and Hadamard products. Furthermore, we focus on fast convolution of higher-order tensors represented by the Tucker/canonical models. Optimized versions of the orthogonal alternating least-squares (ALS) algorithm is presented taking into account the different formats of input data. We propose and test numerically the mixed CT-model, which is based on the additive splitting of a tensor as a sum of canonical and Tucker-type representations. It allows to stabilize the ALS iteration in the case of “ill-conditioned” tensors. The best rank-(r1,..., rd) Tucker decomposition is applied to 3D tensors generated by classical potentials, for example $$\tfrac{1}{{\left| {x - y} \right|}}, e^{ - \alpha \left| {x - y} \right|} , \tfrac{{e^{ - \left| {x - y} \right|} }}{{\left| {x - y} \right|}}$$ and $$\tfrac{{erf(|x|)}}{{|x|}}$$ with x, y ∈ ℝd. Numerical results for tri-linear decompositions illustrate exponential convergence in the Tucker rank, and robustness of the orthogonal ALS iteration.

[1]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[2]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[3]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[4]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[5]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[6]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[7]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  V. Temlyakov Greedy Algorithms andM-Term Approximation with Regard to Redundant Dictionaries , 1999 .

[10]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[11]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[12]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[13]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[14]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[15]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[17]  Ivan P. Gavrilyuk,et al.  Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.

[18]  Tamara G. Kolda,et al.  MATLAB tensor classes for fast algorithm prototyping. , 2004 .

[19]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[20]  Brett W. Bader,et al.  A preliminary report on the development of MATLAB tensor classes for fast algorithm prototyping. , 2004 .

[21]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[22]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[23]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[24]  Christian Lubich,et al.  On variational approximations in quantum molecular dynamics , 2004, Math. Comput..

[25]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[26]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[27]  Wolfgang Hackbusch Fast and Exact Projected Convolution for Non-equidistant Grids - Extended Version , 2006 .

[28]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[29]  Wolfgang Hackbusch Fast and exact projected convolution for non-equidistant grids , 2007, Computing.

[30]  M. S. Min,et al.  Fourier-Padé approximations and filtering for spectral simulations of an incompressible Boussinesq convection problem , 2007, Math. Comput..

[31]  Boris N. Khoromskij,et al.  Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation , 2007, Math. Comput..

[32]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[33]  Boris N. Khoromskij,et al.  Approximate iterations for structured matrices , 2008, Numerische Mathematik.