Automatic classification of normal forms

[1]  Patrick A. Worfolk,et al.  Zeros of Equivariant Vector Fields: Algorithms for an Invariant Approach , 1994, J. Symb. Comput..

[2]  Ferdinando Mora,et al.  An Algorithm to Compute the Equations of Tangent Cones , 1982, EUROCAM.

[3]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[4]  Dieter Armbruster Bifurcation Theory and Computer Algebra: An Initial Approach , 1985, European Conference on Computer Algebra.

[5]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[6]  J. Mather,et al.  Stability of $C^\infty $ mappings, III. Finitely determined map-germs , 1968 .

[7]  D. Armbruster,et al.  "Perturbation Methods, Bifurcation Theory and Computer Algebra" , 1987 .

[8]  Dieter Armbruster,et al.  Coupled stationary bifurcations in non-flux boundary value problems , 1987 .

[9]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[10]  Tim Poston,et al.  Post-buckling behavior of a non-linearly hyperelastic thin rod with cross-section invariant under the dihedral group Dn , 1985 .

[11]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[12]  Charles Terence Clegg Wall,et al.  Determinacy and unipotency , 1987 .

[13]  Leopoldo García Franquelo,et al.  An Algorithm for Symbolic Computation of Center Manifolds , 1988, ISSAC.

[14]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..