Topological Summaries of Tumor Images Improve Prediction of Disease Free Survival in Glioblastoma Multiforme

In this paper we propose a novel statistic, the smooth Euler characteristic transform (SECT). The SECT is designed to integrate shape information into standard statistical models. More specifically, the SECT allows us to represent shapes as a collection of vectors with little to no loss in information. As a result, detailed shape information can be combined with biomarkers such as gene expression in standard statistical frameworks, such as linear mixed models. We illustrate the utility of the SECT in radiogenomics by predicting disease free survival in glioblastoma multiforme patients based on the shape of their tumor as assayed by magnetic resonance imaging. We show that the SECT features outperform gene expression, volumetric features, and morphometric features in predicting disease free survival.

[1]  K. Borsuk On the imbedding of systems of compacta in simplicial complexes , 1948 .

[2]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[3]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[4]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[5]  Yu. D. Burago,et al.  A.D. Alexandrov spaces with curvature bounded below , 1992 .

[6]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[7]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[8]  T. Fearn,et al.  Multivariate Bayesian variable selection and prediction , 1998 .

[9]  E. Holland,et al.  Glioblastoma multiforme: the terminator. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Z L Gokaslan,et al.  A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. , 2001, Journal of neurosurgery.

[11]  Raymond Sawaya,et al.  Necrosis and Glioblastoma: A Friend or a Foe? A Review and a Hypothesis , 2002, Neurosurgery.

[12]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[13]  J. Berger,et al.  Optimal predictive model selection , 2004, math/0406464.

[14]  Daniel J Sargent,et al.  Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[16]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Glyn Johnson,et al.  Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. , 2006, Radiology.

[18]  M. Stephens,et al.  Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits , 2007, PLoS genetics.

[19]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[20]  Sayan Mukherjee,et al.  Modeling Cancer Progression via Pathway Dependencies , 2008, PLoS Comput. Biol..

[21]  S. Rabe-Hesketh,et al.  Prediction in multilevel generalized linear models , 2009 .

[22]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[23]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[24]  José Crossa,et al.  Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. , 2010, Genetics research.

[25]  M. Stephens,et al.  Bayesian variable selection regression for genome-wide association studies and other large-scale problems , 2011, 1110.6019.

[26]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[27]  Bengt Glimelius,et al.  Survival endpoints in colorectal cancer and the effect of second primary other cancer on disease free survival , 2011, BMC Cancer.

[28]  Bahram Parvin,et al.  Morphometic analysis of TCGA glioblastoma multiforme , 2011, BMC Bioinformatics.

[29]  Thomas A. Funkhouser,et al.  Algorithms to automatically quantify the geometric similarity of anatomical surfaces , 2011, Proceedings of the National Academy of Sciences.

[30]  I. Daubechies,et al.  Continuous Procrustes Distance Between Two Surfaces , 2011, 1106.4588.

[31]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[32]  A. Feinberg,et al.  Increased methylation variation in epigenetic domains across cancer types , 2011, Nature Genetics.

[33]  Tao Jiang,et al.  MRI Manifestions Correlate with Survival of Glioblastoma Multiforme Patients , 2012, Cancer biology & medicine.

[34]  Sanjeev Chawla,et al.  Use of magnetic perfusion-weighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma. , 2012, Neuro-oncology.

[35]  Xiang Zhou,et al.  Polygenic Modeling with Bayesian Sparse Linear Mixed Models , 2012, PLoS genetics.

[36]  Michal Sheffer,et al.  Pathway-based personalized analysis of cancer , 2013, Proceedings of the National Academy of Sciences.

[37]  Michael Weller,et al.  Standards of care for treatment of recurrent glioblastoma--are we there yet? , 2013, Neuro-oncology.

[38]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[39]  Jordan M. Malof,et al.  Imaging descriptors improve the predictive power of survival models for glioblastoma patients. , 2013, Neuro-oncology.

[40]  S. Mukherjee,et al.  Persistent Homology Transform for Modeling Shapes and Surfaces , 2013, 1310.1030.

[41]  Bahram Parvin,et al.  Invariant Delineation of Nuclear Architecture in Glioblastoma Multiforme for Clinical and Molecular Association , 2013, IEEE Transactions on Medical Imaging.

[42]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[43]  S. Mukherjee,et al.  Partial Factor Modeling: Predictor-Dependent Shrinkage for Linear Regression , 2013 .

[44]  J Crossa,et al.  Genomic prediction in CIMMYT maize and wheat breeding programs , 2013, Heredity.

[45]  A. Carriquiry,et al.  Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures , 2014, G3: Genes, Genomes, Genetics.

[46]  Gunnar E. Carlsson,et al.  Topological pattern recognition for point cloud data* , 2014, Acta Numerica.

[47]  S. Plevritis,et al.  Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. , 2014, Radiology.

[48]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[49]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[50]  S. Mukherjee,et al.  Topological Consistency via Kernel Estimation , 2014, 1407.5272.

[51]  Maciej A. Mazurowski,et al.  Computer-extracted MR imaging features are associated with survival in glioblastoma patients , 2014, Journal of Neuro-Oncology.

[52]  Luke Macyszyn,et al.  Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. , 2014, Radiology.

[53]  Michael Lim,et al.  The Future of Glioblastoma Therapy: Synergism of Standard of Care and Immunotherapy , 2014, Cancers.

[54]  Ash A. Alizadeh,et al.  Toward understanding and exploiting tumor heterogeneity , 2015, Nature Medicine.

[55]  Mauricio Reyes,et al.  Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features , 2015, Scientific Reports.

[56]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[57]  Tingran Gao,et al.  Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics , 2015 .

[58]  D. Yousem,et al.  Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration , 2015, American Journal of Neuroradiology.

[59]  Ingrid Daubechies,et al.  A New Fully Automated Approach for Aligning and Comparing Shapes , 2015, Anatomical record.

[60]  J. Jagadeesan,et al.  MRI kinetics with volumetric analysis in correlation with hormonal receptor subtypes and histologic grade of invasive breast cancers. , 2015, AJR. American journal of roentgenology.

[61]  Tej D. Azad,et al.  Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities , 2015, Science Translational Medicine.

[62]  Wei Zhang,et al.  Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma , 2015, Acta Neuropathologica.

[63]  In-Hee Lee,et al.  Spatiotemporal Evolution of the Primary Glioblastoma Genome. , 2015, Cancer cell.

[64]  Keith L. Ligon,et al.  Somatic mutations associated with MRI-derived volumetric features in glioblastoma , 2015, Neuroradiology.

[65]  M. Zhang,et al.  DNA Methylation Patterns Can Estimate Nonequivalent Outcomes of Breast Cancer with the Same Receptor Subtypes , 2015, PloS one.

[66]  Luke Macyszyn,et al.  Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. , 2016, Neuro-oncology.

[67]  Tingran Gao,et al.  Development and Assessment of Fully Automated and Globally Transitive Geometric Morphometric Methods, With Application to a Biological Comparative Dataset With High Interspecific Variation , 2018, Anatomical record.