Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment

[1]  Juan S. Lezama-Pacheco,et al.  Effect of Ca^{2+} and Zn^{2+} on Uo (2) Dissolution Rates , 2013 .

[2]  S. Pal Soil Sampling and Methods of Analysis , 2013 .

[3]  W. Klysubun,et al.  Performance and status of beamline BL8 at SLRI for X-ray absorption spectroscopy. , 2012, Journal of synchrotron radiation.

[4]  M. Rossi,et al.  Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa , 2012 .

[5]  G. Gadd,et al.  Geomycology: metals, actinides and biominerals. , 2012, Environmental microbiology reports.

[6]  I. Arčon,et al.  XAS analysis of a nanostructured iron polysaccharide produced anaerobically by a strain of Klebsiella oxytoca , 2012, BioMetals.

[7]  Daniel E Giammar,et al.  Effect of Ca2+ and Zn2+ on UO2 dissolution rates. , 2012, Environmental science & technology.

[8]  R. Maier,et al.  Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment. , 2011, Environmental science & technology.

[9]  Z. Rengel,et al.  Zinc in Soils and Crop Nutrition , 2011 .

[10]  D. Kuo,et al.  POLYCRYSTALLINE ZnO NANOWIRES OBTAINED BY PYROLIZING ZINC OXALATE-BASED NANOWIRES FROM TEMPLATE-ASSISTED SOLUTIONS , 2011 .

[11]  J. Thieme,et al.  Sulfur speciation in soil by S K-Edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting. , 2011, Environmental science & technology.

[12]  T. Wubet,et al.  Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. , 2010, Environmental pollution.

[13]  R. Swennen,et al.  Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy , 2010 .

[14]  J. Bever,et al.  Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. , 2010 .

[15]  R. Schulin,et al.  Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. , 2010, Environmental pollution.

[16]  G. Gadd Metals, minerals and microbes: geomicrobiology and bioremediation. , 2010, Microbiology.

[17]  Xiangui Lin,et al.  Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. , 2010 .

[18]  S. Shirtliffe,et al.  Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil , 2010, Mycorrhiza.

[19]  M. Narayan,et al.  The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. , 2009, The international journal of biochemistry & cell biology.

[20]  W. Wenzel Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils , 2009, Plant and Soil.

[21]  P. Mazzafera,et al.  Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. , 2009, Chemosphere.

[22]  M. Misz-Kennan,et al.  Heavy Metals in Mycorrhizal Rhizospheres Contaminated By Zn–Pb Mining and Smelting Around Olkusz in Southern Poland , 2009 .

[23]  Junxing Yang,et al.  Metal accumulation and tolerance in wetland plants , 2009, Frontiers of Biology in China.

[24]  T. Kuyper,et al.  Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands , 2009, Mycorrhiza.

[25]  A. Voegelin,et al.  Local coordination of Zn in hydroxy-interlayered minerals and implications for Zn retention in soils , 2009 .

[26]  C. Leyval,et al.  Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils , 2008 .

[27]  P. Visoottiviseth,et al.  Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. , 2008, Chemosphere.

[28]  F. Buscot,et al.  Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit , 2008 .

[29]  G. Berta,et al.  Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. , 2008, Environmental pollution.

[30]  Koen Janssens,et al.  Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES. , 2008, Journal of agricultural and food chemistry.

[31]  J. Manteca,et al.  Zn mobility and geochemistry in surface sulfide mining soils from SE Spain. , 2008, Environmental research.

[32]  K. Suntornvongsagul,et al.  Fate and effects of heavy metals in salt marsh sediments. , 2007, Environmental pollution.

[33]  P. Audet,et al.  Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. , 2007, Environmental pollution.

[34]  Weihong Xu,et al.  Root Exudates, Rhizosphere Zn Fractions, and Zn Accumulation of Ryegrass at Different Soil Zn Levels , 2007 .

[35]  Xi Xiao,et al.  Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. , 2007, Environmental pollution.

[36]  K. Suntornvongsagul,et al.  Uptake and Translocation of Heavy Metals in Salt Marsh Sediments by Spartina patens , 2007, Bulletin of environmental contamination and toxicology.

[37]  R. Schulin,et al.  The effects of plants on the mobilization of Cu and Zn in soil columns. , 2007, Environmental science & technology.

[38]  I. Brunner,et al.  Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. , 2007, Tree physiology.

[39]  Andrew D. Bowen,et al.  X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. , 2007, Environmental microbiology.

[40]  J. Cabała,et al.  Metalliferous Constituents of Rhizosphere Soils Contaminated by Zn–Pb Mining in Southern Poland , 2007 .

[41]  Antonio Lanzirotti,et al.  Zinc coordination to multiple ligand atoms in organic-rich surface soils. , 2006, Environmental science & technology.

[42]  S. Rao,et al.  Resource Recovery and Recycling from Metallurgical Wastes , 2006 .

[43]  G. Gadd,et al.  Zinc Phosphate Transformations by the Paxillus involutus/Pine Ectomycorrhizal Association , 2006, Microbial Ecology.

[44]  P. Audet,et al.  Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil , 2006, Mycorrhiza.

[45]  J. Barea,et al.  Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. , 2006, Chemosphere.

[46]  Kenneth J. T. Livi,et al.  Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil , 2005 .

[47]  J. Peralta-Videa,et al.  PHYTOREMEDIATION OF HEAVY METALS AND STUDY OF THE METAL COORDINATION BY X-RAY ABSORPTION SPECTROSCOPY , 2005 .

[48]  Ruben Kretzschmar,et al.  Changes in zinc speciation in field soil after contamination with zinc oxide. , 2005, Environmental science & technology.

[49]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[50]  G. Gadd,et al.  Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi , 2005 .

[51]  Valérie Bert,et al.  The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, x-ray fluorescence, EXAFS spectroscopy, and principal components analysis , 2005 .

[52]  Nicolas Geoffroy,et al.  Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques , 2005 .

[53]  G. Gadd,et al.  Zinc Phosphate and Pyromorphite Solubilization by Soil Plant-Symbiotic Fungi , 2004 .

[54]  P. Christie,et al.  Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc , 2004, Plant and Soil.

[55]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[56]  K. D. Jayasuriya,et al.  XANES calibrations for the oxidation state of iron in a silicate glass , 2003 .

[57]  M. Marcus,et al.  Localization an speciation of Zn in mycorrhized roots by μSXRF and μEXAFS , 2003 .

[58]  Y. Bi,et al.  Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. , 2003, Chemosphere.

[59]  J. Hazemann,et al.  Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis , 2002 .

[60]  J. Andrews,et al.  An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture , 2002 .

[61]  R. Singh,et al.  Review of hydrometallurgical recovery of zinc from industrial wastes , 2001 .

[62]  A. Laidlaw,et al.  Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. , 2001, Chemosphere.

[63]  P. Christie,et al.  Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. , 2001, Chemosphere.

[64]  J. Hazemann,et al.  QUANTITATIVE ZN SPECIATION IN SMELTER-CONTAMINATED SOILS BY EXAFS SPECTROSCOPY , 2000 .

[65]  S. Prakash,et al.  Studies on mobilization of chromium with reference to its plant availability – Role of organic acids , 1999, Biometals.

[66]  Ilya Raskin,et al.  Zinc Ligands in the Metal Hyperaccumulator Thlaspi caerulescens As Determined Using X-ray Absorption Spectroscopy , 1999 .

[67]  T. Grove,et al.  Working with Mycorrhizas in Forestry and Agriculture , 1996 .

[68]  Y. Iwasawa X-Ray Absorption Fine Structure for Catalysts and Surfaces , 1996 .

[69]  P. Campbell,et al.  Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue , 1996 .

[70]  M. R. Carter,et al.  Soil Sampling and Methods of Analysis , 1993 .

[71]  A. Chaboud,et al.  Comparison of maize root mucilages isolated from root exudates and root surface extracts by complementary cytological and biochemical investigations , 1990, Protoplasma.

[72]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[73]  A. Klute Methods of soil analysis. Part 1. Physical and mineralogical methods. , 1988 .

[74]  J. Morel,et al.  Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots , 1986, Biology and Fertility of Soils.

[75]  P. E. Yankwich,et al.  Pyrolysis of Zinc Oxalate: Kinetics and Stoichiometry , 1964 .

[76]  D. B. Duncan MULTIPLE RANGE AND MULTIPLE F TESTS , 1955 .

[77]  T. Fujikawa,et al.  Introduction of XAFS , 2013 .

[78]  Y. Prezado,et al.  Medical Applications of Synchrotron Radiation , 2012 .

[79]  Geoffrey M Gadd,et al.  Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. , 2007, Mycological research.

[80]  H. Bothe,et al.  Arbuscular mycorrhiza and heavy metal tolerance. , 2007, Phytochemistry.

[81]  D. Crowley,et al.  7 Function of Siderophores in the Plant Rhizosphere , 2007 .

[82]  P. Kump,et al.  Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. , 2006, Environmental pollution.

[83]  K. Mukerji,et al.  Microbial activity in the rhizosphere , 2006 .

[84]  A. Mccomb Plants and Environment , 2006 .

[85]  M. Sharif Arbuscular Mycorrhizal Incidence and Infectivity of Crops in North West Frontier Province of Pakistan , 2006 .

[86]  K. Suntornvongsagul Effect of heavy metals on salt march biota , 2005 .

[87]  A. Hirner,et al.  Organic metal and metalloid species in the environment: analysis, distribution, processes and toxicological evaluation. , 2004 .

[88]  T. Sham X-ray applications , 2002 .

[89]  C. Lefébvre,et al.  The Zn biogeochemistry of Armeria maritima (Mill.) Willd. : Within and between population studies , 2001 .

[90]  J. Schecker XAFS A Technique to Probe Local Structure , 2000 .

[91]  R. Lal Soil Quality: For Crop Production and Ecosystem Health , 1998 .

[92]  S. Grayston,et al.  Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability , 1997 .

[93]  J Vangronsveld,et al.  Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. , 1995, Environmental pollution.

[94]  H. Marschner 15 – The Soil–Root Interface (Rhizosphere) in Relation to Mineral Nutrition , 1995 .

[95]  W. C. Dahnke Soil test interpretation , 1993 .

[96]  D. Koningsberger,et al.  X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS and XANES , 1988 .

[97]  B. Alloway,et al.  Copper in plant, animal and human nutrition. , 1986 .

[98]  R. J. Bartlett,et al.  Nitrification in soil suspensions treated with chromium (III, VI) salts or tannery wastes , 1984 .