Heterodimeric structure of superoxide dismutase in complex with its metallochaperone

[1]  T. O’Halloran,et al.  Mechanism of Cu,Zn-Superoxide Dismutase Activation by the Human Metallochaperone hCCS * , 2001, The Journal of Biological Chemistry.

[2]  A. Rosenzweig,et al.  Copper delivery by metallochaperone proteins. , 2001, Accounts of chemical research.

[3]  A. Lamb,et al.  Heterodimer formation between superoxide dismutase and its copper chaperone. , 2000, Biochemistry.

[4]  T. Siddique,et al.  Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[5]  M. Gurney,et al.  Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  V. Culotta,et al.  Copper Activation of Superoxide Dismutase 1 (SOD1) in Vivo , 2000, The Journal of Biological Chemistry.

[7]  J. Kaplan,et al.  Domains I and III of the human copper chaperone for superoxide dismutase interact via a cysteine-bridged Dicopper(I) cluster. , 2000, Biochemistry.

[8]  C. Krebs,et al.  IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. , 2000, Biochemistry.

[9]  H. Zhu,et al.  Cobalt(2+) binding to human and tomato copper chaperone for superoxide dismutase: implications for the metal ion transfer mechanism. , 2000, Biochemistry.

[10]  L. T. Hall,et al.  X-ray crystallographic and analytical ultracentrifugation analyses of truncated and full-length yeast copper chaperones for SOD (LYS7): a dimer-dimer model of LYS7-SOD association and copper delivery. , 2000, Biochemistry.

[11]  A. Wernimont,et al.  Crystal structure of the second domain of the human copper chaperone for superoxide dismutase. , 2000, Biochemistry.

[12]  A. Wernimont,et al.  CRYSTAL STRUCTURE OF THE ATX1 METALLOCHAPERONE PROTEIN , 1999 .

[13]  J. Stubbe,et al.  Purification of ribonucleotide reductase subunits Y1, Y2, Y3, and Y4 from yeast: Y4 plays a key role in diiron cluster assembly. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. O’Halloran,et al.  Multiple Protein Domains Contribute to the Action of the Copper Chaperone for Superoxide Dismutase* , 1999, The Journal of Biological Chemistry.

[15]  A. Desideri,et al.  A model for the incorporation of metal from the copper chaperone CCS into Cu,Zn superoxide dismutase. , 1999, Structure.

[16]  A. Wernimont,et al.  Crystal structure of the copper chaperone for superoxide dismutase , 1999, Nature Structural Biology.

[17]  T. Poulos Helping copper find a home , 1999, Nature Structural Biology.

[18]  A. Wernimont,et al.  Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. , 1999, Structure.

[19]  G. Roberts,et al.  Incorporation of Molybdenum into the Iron-Molybdenum Cofactor of Nitrogenase* , 1999, The Journal of Biological Chemistry.

[20]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[21]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[22]  D. Radisky,et al.  Regulation of Transition Metal Transport across the Yeast Plasma Membrane* , 1999, The Journal of Biological Chemistry.

[23]  D. Price,et al.  The Copper Chaperone CCS Is Abundant in Neurons and Astrocytes in Human and Rodent Brain , 1999, Journal of neurochemistry.

[24]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[25]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[26]  M. Posewitz,et al.  Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. , 1998, Biochemistry.

[27]  W. Maret,et al.  Thiolate ligands in metallothionein confer redox activity on zinc clusters. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Shin Lin,et al.  Metal ion chaperone function of the soluble Cu(I) receptor Atx1. , 1997, Science.

[29]  R. Casareno,et al.  The Copper Chaperone for Superoxide Dismutase* , 1997, The Journal of Biological Chemistry.

[30]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[31]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[32]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[33]  D. Thiele,et al.  A widespread transposable element masks expression of a yeast copper transport gene. , 1996, Genes & development.

[34]  R. Klausner,et al.  The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. , 1994, The Journal of biological chemistry.

[35]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[36]  M Bolognesi,et al.  Conserved patterns in the Cu,Zn superoxide dismutase family. , 1994, Journal of molecular biology.

[37]  J. Tainer,et al.  The role of arginine 143 in the electrostatics and mechanism of Cu, Zn superoxide dismutase: Computational and experimental evaluation by mutational analysis , 1994, Proteins.

[38]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[39]  M. Bolognesi,et al.  Crystal structure of yeast Cu,Zn superoxide dismutase. Crystallographic refinement at 2.5 A resolution. , 1992, Journal of molecular biology.

[40]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[41]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[42]  Peter A. Kollman,et al.  Electrostatic recognition between superoxide and copper, zinc superoxide dismutase , 1983, Nature.

[43]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[44]  I. Bertini,et al.  Structure and Properties of Copper-Zinc Superoxide Dismutases , 1998 .

[45]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[46]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.