An implicit feedback approach for interactive information retrieval

Searchers can face problems finding the information they seek. One reason for this is that they may have difficulty devising queries to express their information needs. In this article, we describe an approach that uses unobtrusive monitoring of interaction to proactively support searchers. The approach chooses terms to better represent information needs by monitoring searcher interaction with different representations of top-ranked documents. Information needs are dynamic and can change as a searcher views information. The approach we propose gathers evidence on potential changes in these needs and uses this evidence to choose new retrieval strategies. We present an evaluation of how well our technique estimates information needs, how well it estimates changes in these needs and the appropriateness of the interface support it offers. The results are presented and the avenues for future research identified.

[1]  James P. Callan,et al.  Passage-level evidence in document retrieval , 1994, SIGIR '94.

[2]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[3]  Carol L. Barry Document Representations and Clues to Document Relevance , 1998, J. Am. Soc. Inf. Sci..

[4]  Peter Ingwersen,et al.  Information Retrieval Interaction , 1992 .

[5]  Stefano Mizzaro,et al.  Evaluating user interfaces to information retrieval systems: a case study on user support , 1996, SIGIR '96.

[6]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[7]  Amanda Spink,et al.  From Highly Relevant to Not Relevant: Examining Different Regions of Relevance , 1998, Inf. Process. Manag..

[8]  Micheline Hancock-Beaulieu,et al.  Interactive searching and interface issues in the Okapi best match probabilistic retrieval system , 1998, Interact. Comput..

[9]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[10]  Diane Kelly Understanding implicit feedback and document preference: a naturalistic user study , 2004, SIGF.

[11]  Hsinchun Chen,et al.  Cognitive process as a basis for intelligent retrieval systems design , 1991, Inf. Process. Manag..

[12]  Marcia J. Bates,et al.  Where should the person stop and the information search interface start? , 1990, Inf. Process. Manag..

[13]  Ryen W. White,et al.  Finding relevant documents using top ranking sentences: an evaluation of two alternative schemes , 2002, SIGIR '02.

[14]  Ryen W. White,et al.  A task-oriented study on the influencing effects of query-biased summarisation in web searching , 2003, Inf. Process. Manag..

[15]  Donna Harman,et al.  Information Processing and Management , 2022 .

[16]  Pia Borlund,et al.  Experimental components for the evaluation of interactive information retrieval systems , 2000, J. Documentation.

[17]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[18]  Thorsten Joachims,et al.  Web Watcher: A Tour Guide for the World Wide Web , 1997, IJCAI.

[19]  Ryen W. White Implicit feedback for interactive information retrieval , 2005, SIGF.

[20]  Ryen W. White,et al.  An approach for implicitly detecting information needs , 2003, CIKM '03.

[21]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[22]  Stefano Mizzaro,et al.  Strategic help in user interfaces for information retrieval , 2002, J. Assoc. Inf. Sci. Technol..

[23]  Ryen W. White,et al.  The Use of Implicit Evidence for Relevance Feedback in Web Retrieval , 2002, ECIR.

[24]  Mark Claypool,et al.  Implicit interest indicators , 2001, IUI '01.

[25]  Pertti Vakkari,et al.  Subject Knowledge, Source of Terms, and Term Selection in Query Expansion: An Analytical Study , 2002, ECIR.

[26]  Marcia J. Bates,et al.  The design of browsing and berrypicking techniques for the online search interface , 1989 .

[27]  James Allan,et al.  Approaches to passage retrieval in full text information systems , 1993, SIGIR.

[28]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[29]  James D. Hollan,et al.  Edit wear and read wear , 1992, CHI.

[30]  David Robins,et al.  Shifts of Focus in Information Retrieval Interaction. , 1997 .

[31]  Stuart K. Card,et al.  Information foraging in information access environments , 1995, CHI '95.

[32]  Iain Campbell,et al.  The ostensive model of developing information needs , 2000 .

[33]  Susan Dunman,et al.  Seeking meaning: A process approach to library and information services , 1996 .

[34]  Douglas W. Oard,et al.  Using Implicit Feedback for User Modeling in Internet and Intranet Searching ϕ , 2000 .

[35]  Nicholas J. Belkin,et al.  Reading time, scrolling and interaction: exploring implicit sources of user preferences for relevance feedback , 2001, Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.

[36]  Ian Ruthven On the Use of Explanations as Mediating Device for Relevance Feedback , 2002, ECDL.

[37]  Ryen W. White A Granular Approach to Web Search Result Presentation , 2003, INTERACT.

[38]  Nicholas J. Belkin,et al.  A case for interaction: a study of interactive information retrieval behavior and effectiveness , 1996, CHI.

[39]  Yoichi Shinoda,et al.  Information filtering based on user behavior analysis and best match text retrieval , 1994, SIGIR '94.

[40]  T. Joachims WebWatcher : A Tour Guide for the World Wide Web , 1997 .

[41]  Harry W. Bruce,et al.  A Cognitive View of the Situational Dynamism of User-Centered Relevance Estimation , 1994, J. Am. Soc. Inf. Sci..

[42]  Ian Ruthven,et al.  Re-examining the potential effectiveness of interactive query expansion , 2003, SIGIR.

[43]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part I. Background and Theory , 1997, J. Documentation.

[44]  Pia Borlund,et al.  The IIR evaluation model: a framework for evaluation of interactive information retrieval systems , 2003, Inf. Res..