A fully automatic polygon scaled boundary finite element method for modelling crack propagation

An automatic crack propagation remeshing procedure using the polygon scaled boundary FEM is presented. The remeshing algorithm, developed to model any arbitrary shape, is simple yet flexible because only minimal changes are made to the global mesh in each step. Fewer polygon elements are used to predict the final crack path with the algorithm as compared to previous approaches. Two simple polygon optimisation methods which enable the remeshing procedure to model crack propagation more stably are implemented. Four crack propagation benchmarks are modelled to validate the developed method and demonstrate its salient features.

[1]  Victor E. Saouma,et al.  Numerical evaluation of the quarter‐point crack tip element , 1984 .

[2]  C. S. Krishnamoorthy,et al.  Computational model for discrete crack growth in plain and reinforced concrete , 2002 .

[3]  F. Tin-Loi,et al.  Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements , 2012 .

[4]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[5]  Andrew Deeks,et al.  Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method , 2007 .

[6]  E. Ooi,et al.  Efficient prediction of deterministic size effects using the scaled boundary finite element method , 2010 .

[7]  Andrew Deeks,et al.  Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method , 2005 .

[8]  John P. Wolf,et al.  Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method , 2002 .

[9]  M. Rashid The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .

[10]  J. Wolf,et al.  Finite-element modelling of unbounded media , 1996 .

[11]  Bhushan Lal Karihaloo,et al.  Accurate determination of the coefficients of elastic crack tip asymptotic field , 2001 .

[12]  Timon Rabczuk,et al.  Extended meshfree methods without branch enrichment for cohesive cracks , 2007 .

[13]  Salim Belouettar,et al.  Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment , 2014, 1406.3869.

[14]  H. Nguyen-Xuan,et al.  A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures , 2008 .

[15]  Ean Tat Ooi,et al.  A hybrid finite element-scaled boundary finite element method for crack propagation modelling , 2010 .

[16]  D. Ngo,et al.  Finite Element Analysis of Reinforced Concrete Beams , 1967 .

[17]  Ean Tat Ooi,et al.  Modelling multiple cohesive crack propagation using a finite element―scaled boundary finite element coupled method , 2009 .

[18]  Ean Tat Ooi,et al.  Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method , 2011 .

[19]  Amir R. Khoei,et al.  Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique , 2008 .

[20]  F. Tin-Loi,et al.  Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique , 2013 .

[21]  Eftychios Sifakis,et al.  An XFEM method for modeling geometrically elaborate crack propagation in brittle materials , 2011 .

[22]  Ean Tat Ooi,et al.  Modelling dynamic crack propagation using the scaled boundary finite element method , 2011 .

[23]  Francis Tin-Loi,et al.  A scaled boundary polygon formulation for elasto-plastic analyses , 2014 .

[24]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[25]  D. P. Rooke,et al.  Dual boundary element incremental analysis of crack propagation , 1993 .

[26]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[27]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[28]  Bhushan Lal Karihaloo,et al.  Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element , 2004 .

[29]  Jon Trevelyan,et al.  Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics , 2008 .

[30]  Jian Fei Chen,et al.  Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods , 2004 .

[31]  P. Fedeliński,et al.  Computer Modelling of Dynamic Fracture Experiments , 2010 .

[32]  J. A. Teixeira de Freitas,et al.  HYBRID-TREFFTZ FINITE ELEMENT FORMULATION FOR SIMULATION OF SINGULAR STRESS FIELDS , 1996 .

[33]  S. Natarajan,et al.  Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation , 2014 .

[34]  Ted Belytschko,et al.  An XFEM/Spectral element method for dynamic crack propagation , 2011 .

[35]  J. Wolf,et al.  A virtual work derivation of the scaled boundary finite-element method for elastostatics , 2002 .

[36]  R. Simpson,et al.  A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics , 2011 .

[37]  S. Natarajan,et al.  Representation of singular fields without asymptotic enrichment in the extended finite element method , 2012, 1212.6957.

[38]  M. Xie,et al.  Energy-Based Cohesive Crack Propagation Modeling , 1995 .

[39]  Zhenjun Yang,et al.  Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method , 2006 .

[40]  Daniel Swenson,et al.  Finite element analysis of edge cracking in plates , 1990 .

[41]  Chuhan H. Zhang,et al.  Modelling of crack propagation of gravity dams by scaled boundary polygons and cohesive crack model , 2013, International Journal of Fracture.

[42]  P. Bouchard,et al.  Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria , 2003 .